1 |
Crandall M G , Rabinowitz P H . Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8: 321- 340
doi: 10.1016/0022-1236(71)90015-2
|
2 |
Dancer E N . On the indices of fixed points of mapping in cones and applications. J Math Anal Appl, 1983, 91: 131- 151
doi: 10.1016/0022-247X(83)90098-7
|
3 |
Dancer E N . Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one. Bull London Math Soc, 2002, 34: 533- 538
doi: 10.1112/S002460930200108X
|
4 |
Du Y H , Lou Y . Some uniqueness and exact multiplicity results for a predator-prey model. Trans Amer Math Soc, 1997, 6: 2443- 2475
|
5 |
Du Y H , Lou Y . S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predatorprey model. J Differential Equations, 1998, 144: 390- 440
doi: 10.1006/jdeq.1997.3394
|
6 |
Du Y H , Shi J P . A diffusive predator-prey model with a protection zone. J Differential Equations, 2006, 229: 63- 91
doi: 10.1016/j.jde.2006.01.013
|
7 |
Du Y H , Peng R , Wang M X . Effect of a protection zone in the diffusive Leslie predator-prey model. J Differential Equations, 2009, 246: 3932- 3956
doi: 10.1016/j.jde.2008.11.007
|
8 |
李海侠. 一类食物链模型正解的稳定性和唯一性. 数学物理学报, 2017, 37A (6): 1094- 1104
doi: 10.3969/j.issn.1003-3998.2017.06.009
|
|
Li H X . Stability and uniqueness of positive solutions for a food-chain model. Acta Math Sci, 2017, 37A (6): 1094- 1104
doi: 10.3969/j.issn.1003-3998.2017.06.009
|
9 |
Li L . Coexistence theorems of steady states for predator-prey interacting systems. Trans Amer Math Soc, 1988, 305: 143- 166
doi: 10.1090/S0002-9947-1988-0920151-1
|
10 |
Li L . On positive solutions of a nonlinear equilibrium boundary values problem. J Math Anal Appl, 1989, 138: 537- 549
doi: 10.1016/0022-247X(89)90308-9
|
11 |
López-Gómez J , Pardo R . Existence and uniqueness of coexistence states for the predator-prey LotkaVolterra model with diffusion on intervals. Differential Integral Equations, 1993, 6: 1025- 1031
|
12 |
López-Gómez J . Spectral Theorey and Nonlinear Functional Analysis. Boca Raton, FL: Chapman and Hall/CRC, 2001
|
13 |
Kadota T , Kuto K . Positive steady states for a prey-predator model with some nonlinear diffusion terms. J Math Anal Appl, 2006, 323: 1387- 1401
doi: 10.1016/j.jmaa.2005.11.065
|
14 |
Kuto K , Yamada Y . Multiple coexistence states for a prey-predator system with cross-diffusion. J Differential Equations, 2004, 197: 315- 348
doi: 10.1016/j.jde.2003.08.003
|
15 |
Kuto K . A strongly coupled diffusion effect on the stationary solution set of a prey-predator model. Adv Diff Eqns, 2007, 12: 145- 172
|
16 |
Kuto K , Yamada Y . Coexistence problem for a prey-predator model with density-dependent diffusion. Nonlinear Anal, 2009, 71: 2223- 2232
doi: 10.1016/j.na.2009.05.014
|
17 |
Kuto K , Yamada Y . Positive solutions for Lotka-Volterra competition systems with cross-diffsuion. Appl Anal, 2010, 89: 1037- 1066
doi: 10.1080/00036811003627534
|
18 |
Lou Y , Ni W M . Diffusion, self-diffusion and cross-diffusion. J Differential Equations, 1996, 131: 79- 131
doi: 10.1006/jdeq.1996.0157
|
19 |
Lou Y , Ni W M . Diffusion vs cross-diffusion:An elliptic approach. J Differential Equations, 1999, 154: 157- 190
doi: 10.1006/jdeq.1998.3559
|
20 |
Lou Y , Ni W M , Wu Y P . On the global existence of a cross-diffusion system. Discrete Contin Dyn Syst, 1998, 4: 193- 203
doi: 10.3934/dcdsa
|
21 |
Lou Y , Ni W M , Yotsutani S . On a limiting system in the Lotka-Volterra competition with cross-diffsuion. Discrete Contin Dyn Syst, 2004, 10: 435- 458
|
22 |
Nakashima K , Yamada Y . Positive steady states for prey-predator models with cross-diffusion. Adv Diff Eqns, 1996, 6: 1099- 1122
|
23 |
Rabinowitz P H . Some global results for nonlinear eigenvalue problems. J Funct Anal, 1971, 7: 487- 513
doi: 10.1016/0022-1236(71)90030-9
|
24 |
Wang Y X , Li W T . Stationary problem of a predator-prey system with nonlinear diffusion effects. Comput Math Appl, 2015, 70: 2102- 2124
doi: 10.1016/j.camwa.2015.08.033
|
25 |
袁海龙, 李艳玲. 一类具有Lotka-Volterra竞争模型共存解的存在性与稳定性. 数学物理学报, 2017, 36A (1): 173- 184
doi: 10.3969/j.issn.1003-3998.2017.01.016
|
|
Yuan H L , Li Y L . Existence and stability of coexistence states for a Lotka-Volterra competition model. Acta Math Sci, 2017, 36A (1): 173- 184
doi: 10.3969/j.issn.1003-3998.2017.01.016
|