Zhide Liu,Zhengping Wang. Least Energy Solution for Nonlinear Kirchhoff Type Elliptic Equation[J]. Acta mathematica scientia,Series A, 2019, 39(2): 264-276.
Ambrosetti A , Rabinowitz P H . Dual variational methods in critical point theory and applications. Journal of Functional Analysis, 1973, 14 (4): 349- 381
doi: 10.1016/0022-1236(73)90051-7
2
Li Y H , Li F Y , Shi J P . Existence of a positive solutions to Kirchhoff type problems without compactness conditions. Journal of Differential Equations, 2012, 253 (7): 2285- 2294
doi: 10.1016/j.jde.2012.05.017
3
He Y , Li G B . Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents. Calculus of Variations Partial Differential Equations, 2015, 54 (3): 3067- 3106
doi: 10.1007/s00526-015-0894-2
4
Li G B , Ye H Y . Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$. Journal of Differential Equations, 2014, 257 (2): 566- 600
doi: 10.1016/j.jde.2014.04.011
5
Zeng X Y , Zhang Y M . Existence and uniqueness of normalized solutions for the Kirchhoff equation. Applied Mathematics Letters, 2017, 74: 52- 59
doi: 10.1016/j.aml.2017.05.012
6
Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Rhode Island: CBMS, 1986
7
Ding Y H , Li S J . Some existence results of solutions for the semilinear elliptic equations on $\mathbb{R}^N$. Journal of Differential Equations, 1995, 119 (2): 401- 425
doi: 10.1006/jdeq.1995.1096
8
He X M , Zou W M . Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$. Journal of Differential Equations, 2012, 252 (2): 1813- 1834
doi: 10.1016/j.jde.2011.08.035
9
Guo H L , Zhang Y M , Zhou H S . Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure And Applied Analysis, 2018, 17 (5): 1875- 1897
doi: 10.3934/cpaa.2018089