数学物理学报 ›› 2019, Vol. 39 ›› Issue (2): 264-276.

• 论文 • 上一篇    下一篇

非线性Kirchhoff型椭圆方程的最低能量解

柳志德,王征平*()   

  1. 武汉理工大学数学科学研究中心, 理学院数学系 武汉 430070
  • 收稿日期:2018-03-13 出版日期:2019-04-26 发布日期:2019-05-05
  • 通讯作者: 王征平 E-mail:zpwang@whut.edu.cn
  • 基金资助:
    国家自然科学基金(11471331);国家自然科学基金(11871386)

Least Energy Solution for Nonlinear Kirchhoff Type Elliptic Equation

Zhide Liu,Zhengping Wang*()   

  1. Center for Mathematical Sciences and Department of Mathematics, School of Science, Wuhan University of Technology, Wuhan 430070
  • Received:2018-03-13 Online:2019-04-26 Published:2019-05-05
  • Contact: Zhengping Wang E-mail:zpwang@whut.edu.cn
  • Supported by:
    the NSFC(11471331);the NSFC(11871386)

摘要:

该文讨论以下非线性Kirchhoff型椭圆方程非平凡解和非负最低能量解的存在性

{(a+bR3|u|2dx)Δu+V(x)u=μu+|u|p1u,          xR3,uH1(R3),                                                                 xR3,

其中p(3,5), a,b>0, VC(R3,R+)并且lim|x|+V(x)=.通过变分方法,该文首先证明了对于任何b>0,存在δ(b)>0,使得当μ1μ<μ1+δ(b)时,方程(0.1)有非平凡解.其次,进一步证明了存在δ1(b)(0,δ(b)),当μ1<μ<μ1+δ1(b)时,方程(0.1)有非负的最低能量解,这里μ1是Schrödinger算子+V的第一特征值.最后利用对称山路引理证明了对任意的μR,方程(0.1)存在无穷多个非平凡解.

关键词: Kirchhoff方程, 非平凡解, 最低能量解

Abstract:

In this paper, we study the existence of nontrivial solution and nonnegative least energy solution for the following nonlinear Kirchhoff type elliptic equation

where p(3,5), a,b>0, VC(R3,R+) and lim|x|+V(x)=. By using variational methods, firstly we prove that for any b>0, there exists δ(b)>0 such that problem (0.1) (0.1) with μ1μ<μ1+δ(b) has a nontrivial solution, where μ1 denotes the first eigenvalue of the Schrödinger operator +V. Secondly, we show that there exists δ1(b)(0,δ(b)) such that problem (0.1) (0.1) with μ1<μ<μ1+δ1(b) has a nonnegative least energy solution. Finally, by using the symmetric Mountain Pass lemma we prove that problem (0.1) (0.1) has infinitely many nontrivial solutions for any μR.

Key words: Kirchhoff equation, Nontrivial solution, Least energy solution

中图分类号: 

  • O175.2