数学物理学报 ›› 2019, Vol. 39 ›› Issue (1): 67-80.
收稿日期:
2017-02-17
出版日期:
2019-02-26
发布日期:
2019-03-12
作者简介:
尚朝阳, E-mail:基金资助:
Received:
2017-02-17
Online:
2019-02-26
Published:
2019-03-12
Supported by:
摘要:
该文给出了三维不可压缩磁流体(MHD)方程组在带有负指数的非齐次Besov空间中的爆破准则.结果表明方程组的经典解存在时间有限当且仅当范数‖·‖VΘ趋于无穷,这里所定义的范数‖·‖VΘ比非齐次Besov空间中的范数‖·‖B∞,∞α-1弱,其中0 < α < 1.
中图分类号:
尚朝阳. 不可压缩磁流体方程组在Besov空间中的爆破准则[J]. 数学物理学报, 2019, 39(1): 67-80.
Zhaoyang Shang. Blow-Up Criterion for Incompressible Magnetohydrodynamics Equations in Besov Space[J]. Acta mathematica scientia,Series A, 2019, 39(1): 67-80.
1 | Alfvén H . Existence of electromagnetic-hydrodynamic waves. Nature, 1942, 150: 405- 406 |
2 |
Brezis H , Mironescu P . Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J Evol Equa, 2001, 1 (4): 387- 404
doi: 10.1007/PL00001378 |
3 | Bahouri H , Chemin J Y , Danchin R . Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer, 2011 |
4 |
Beale J T , Kato T , Majda A . Remarks on the breakdown of smooth solutions for the 3D Euler equations. Comm Math Phys, 1984, 94: 61- 66
doi: 10.1007/BF01212349 |
5 |
Cannone M , Chen Q , Miao C . A losing estimate for the Ideal MHD equations with application to Blow-up criterion. SIAM J Math Anal, 2007, 38: 1847- 1859
doi: 10.1137/060652002 |
6 |
Chen Q , Miao C , Zhang Z . The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations. Comm Math Phys, 2007, 275: 861- 872
doi: 10.1007/s00220-007-0319-y |
7 |
Chen Q , Miao C , Zhang Z . On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Comm Math Phys, 2008, 284: 919- 930
doi: 10.1007/s00220-008-0545-y |
8 |
Chen Q , Miao C , Zhang Z . On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch Ration Mech Anal, 2010, 195 (2): 561- 578
doi: 10.1007/s00205-008-0213-6 |
9 |
Caflisch R E , Klapper I , Steele G . Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun Math Phys, 1997, 184: 443- 455
doi: 10.1007/s002200050067 |
10 |
Duvaut G , Lions J L . Inéquations en thermoélasticité et magnéto-hydrodynamique. Arch Rational Mech Anal, 1972, 46: 241- 279
doi: 10.1007/BF00250512 |
11 |
Furioli G , Lemarié-Rieusset P G , Terraneo E . Sur l'unicité dans ${L^3}({{mathbb{R}}^3})$ des solutions "mild" des équations de Navier-Stokes[On the uniqueness in ${L^3}({{mathbb{R}}^3})$ of mild solutions of the Navier-Stokes equations]. C R Acad Sci Paris Sér I Math, 1997, 325: 1253- 1256
doi: 10.1016/S0764-4442(97)82348-8 |
12 |
Hasegawa A . Self-organization processes in continuous media. Adv Phys, 1985, 34: 1- 42
doi: 10.1080/00018738500101721 |
13 |
He C , Xin Z . On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235- 254
doi: 10.1016/j.jde.2004.07.002 |
14 |
He C , Xin Z . Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J Funct Anal, 2005, 227: 113- 152
doi: 10.1016/j.jfa.2005.06.009 |
15 | Hajaiej H, Molinet L, Ozawa T, Wang B. Necessary and sufficient conditions for the fractional GagliardoNirenberg inequalities and applications to Navier-Stokes and generalized boson equations. 2011, arXiv: 1004.4287v3 |
16 |
Kozono H , Ogawa T , Taniuchi Y . The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 242: 251- 278
doi: 10.1007/s002090100332 |
17 |
Kozono H , Taniuchi Y . Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm Math Phys, 2000, 214: 191- 200
doi: 10.1007/s002200000267 |
18 |
Kato T , Ponce G . Commutator estimates and Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 891- 907
doi: 10.1002/(ISSN)1097-0312 |
19 | Lifschitz A . Magnetohydro-dynamics and Spectral Theory, Developments in Electromagnetic Theory and Applications. Dordrecht: Kluwer Academic Publishers Group, 1989 |
20 |
Lions P L , Masmoudi N . Uniqueness of mild solutions of the Navier-Stokes system in LN. Comm Partial Differential Equations, 2001, 26: 2211- 2226
doi: 10.1081/PDE-100107819 |
21 |
Lei Z , Zhou Y . BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin Dyn Syst, 2009, 25: 575- 583
doi: 10.3934/dcdsa |
22 | Majda A J . Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York: Springer-Verlag, 1984 |
23 |
Miao C , Yuan B . On the well-posedness of the Cauchy problem for an MHD system in Besov spaces. Math Methods Appl Sci, 2009, 32 (1): 53- 76
doi: 10.1002/mma.v32:1 |
24 |
Ogawa T , Taniuchi Y . On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J Differential Equations, 2003, 190: 39- 63
doi: 10.1016/S0022-0396(03)00013-5 |
25 |
Prodi G . Un teorema di unicitá per le equazioni di Navier-Stokes[A uniqueness theorem for the NavierStokes equations]. Ann Mat Pura Appl, 1959, 48: 173- 182
doi: 10.1007/BF02410664 |
26 |
Politano H , Pouquet A , Sulem P L . Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys Plasmas, 1995, 2: 2931- 2939
doi: 10.1063/1.871473 |
27 | Ren W . On the blow-up criterion for the 3D Boussinesq system with zero viscosity constant. Appl Anal, 2015, 94 (48): 56- 862 |
28 | Serrin J. The Initial Value Problem for the Navier-Stokes Equations//Langer R E. Proceedings of the Symposium on Nonlinear Problems. Madison: Univ of Wisconsin Press, 1963: 69-98 |
29 |
Sermange M , Temam R . Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36 (5): 635- 664
doi: 10.1002/(ISSN)1097-0312 |
30 |
Shang Z . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3 (1): 1- 11
doi: 10.3934/Math.2018.1.1 |
31 |
Wen H , Zhu C . Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data. SIAM J Math Anal, 49 (1): 162- 221
doi: 10.1137/16M1055414 |
32 |
Wu J . Bounds and new approaches for the 3D MHD equations. J Nonlinear Sci, 2002, 12: 395- 413
doi: 10.1007/s00332-002-0486-0 |
33 | Wu J . Regularity results for weak solutions of the 3D MHD equations. Discrete Contin Dynam Syst, 2004, 10: 543- 556 |
34 | Wu J . Regularity criteria for the generalized MHD equations. Commun Partial Differ Equa, 2008, 33 (2): 285- 306 |
35 | Wu J . Global regularity for a class of generalized magnetohydrodynamic equations. J Math Fluid Mech, 2011, 13 (2): 295- 305 |
36 |
Xu X , Ye Z , Zhang Z . Remark on an improved regularity criterion for the 3D MHD equations. Appl Math Lett, 2015, 42: 41- 46
doi: 10.1016/j.aml.2014.11.004 |
37 | Xu X , Ye Z . Note on global regularity of 3D generalized magnetohydrodynamicmodel with zero diffusivity. Commun Pure Appl Anal, 2015, 14 (2): 585- 595 |
38 | Ye Z . Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann Mat Pura Appl, 2016, 4 (4): 1111- 1121 |
39 |
Ye Z , Xu X . Global regularity of 3D generalized incompressible magnetohydrodynamic model. Appl Math Lett, 2014, 35: 1- 6
doi: 10.1016/j.aml.2014.03.018 |
40 |
Ye Z , Xu X . Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system. Nonlinear Anal, 2014, 100: 86- 96
doi: 10.1016/j.na.2014.01.012 |
41 |
Zhang Q . Refined blow-up criterion for the 3D magnetohydrodynamics equations. Appl Anal, 2013, 92 (12): 2590- 2599
doi: 10.1080/00036811.2012.751589 |
42 |
Zhou Y . Remarks on regularities for the 3D MHD equations. Discrete Contin Dynam Systems, 2005, 12: 881- 886
doi: 10.3934/dcdsa |
43 | Zhang Z , Liu X . On the blow-up criterion of smooth solutions to the 3D Idea lMHD equations. Acta Math Appl Sinica E, 2004, 20: 695- 700 |
44 |
Zhang Z , Tang T , Liu L . An Osgood type regularity criterion for the liquid crystal flows. Nonlinear Differ Equa Appl, 2014, 21: 253- 262
doi: 10.1007/s00030-013-0245-y |
45 | Zhang Z , Sadek G . Osgood type regularity criterion for the 3D Newton-Boussinesq equation. Electron J Dierential Equations, 2013, 223: 1- 6 |
46 |
Zhang Z , Yang X . Navier-Stokes equations with vorticity in Besov spaces of negative regular indices. J Math Anal Appl, 2016, 440: 415- 419
doi: 10.1016/j.jmaa.2016.03.037 |
47 | Zhang Z . A logarithmically improved regularity criterion for the 3D MHD system involving the velocity field in homogeneous Besov spaces. Ann Polon Math, 2016, 18 (1): 51- 57 |
[1] | 邱雯,张贻民,AbdelgadirAhmed Adam. 一类相对非线性薛定谔方程解的存在性[J]. 数学物理学报, 2019, 39(1): 95-104. |
[2] | 胡弟弟,汪璇. 记忆型无阻尼抽象发展方程的强时间依赖全局吸引子[J]. 数学物理学报, 2019, 39(1): 81-94. |
[3] | 贺艺军,高怀红,王华,李顺勇. 一类具对数非线性项的伪p-拉普拉斯方程的整体解和爆破的注记[J]. 数学物理学报, 2019, 39(1): 125-132. |
[4] | 彭小明,郑筱筱,尚亚东. 具衰退记忆的四阶拟抛物方程的长时间行为[J]. 数学物理学报, 2019, 39(1): 114-124. |
[5] | 杨延冰,连伟,黄少滨,徐润章. 具广义非线性源的波动方程的高能爆破[J]. 数学物理学报, 2018, 38(6): 1239-1244. |
[6] | 牛耀明,丁勇. 广义色散方程解的极大整体估计[J]. 数学物理学报, 2018, 38(6): 1224-1238. |
[7] | 郑琳,王术,李林锐. 三维流体-粒子相互作用模型:Flowing Regime模型的局部解问题[J]. 数学物理学报, 2018, 38(6): 1173-1192. |
[8] | 范英飞, 章国鹏, 江欣国, 马剑. 一类二阶中立随机偏微分方程的吸引集和拟不变集[J]. 数学物理学报, 2018, 38(6): 1135-1143. |
[9] | 唐文娟, 张正杰. RN上带Hardy项的拟线性椭圆方程两个解的存在性[J]. 数学物理学报, 2018, 38(6): 1153-1161. |
[10] | 王文波,李全清. 变号深阱位势分数阶Schrödinger方程非平凡解的存在性和集中性[J]. 数学物理学报, 2018, 38(5): 893-902. |
[11] | 白喜瑞. 广义耦合方程的延拓结构[J]. 数学物理学报, 2018, 38(4): 658-670. |
[12] | 王丽. 超音速流越过弯曲坡面的反问题[J]. 数学物理学报, 2018, 38(4): 679-686. |
[13] | 谢朝东, 陈志辉. 一般拟线性薛定谔方程正解的存在性[J]. 数学物理学报, 2018, 38(4): 687-696. |
[14] | 赵元章, 马相如. 一类具有变扩散系数的非局部反应-扩散方程解的爆破分析[J]. 数学物理学报, 2018, 38(4): 750-769. |
[15] | 吴斌, 高莹, 闫林, 余军. 一类带有非奇异主部系数矩阵的2×2强耦合偏微分系统的卡勒曼估计及其反源问题[J]. 数学物理学报, 2018, 38(4): 779-799. |
|