数学物理学报 ›› 2019, Vol. 39 ›› Issue (1): 29-37.

• 论文 • 上一篇    下一篇

Nearly Kaehler流形$\mathbb{S}$3×$\mathbb{S}$3上的殆切触拉格朗日子流形

杨标桂1,*(),陈静2   

  1. 1 福建师范大学数学与信息学院 福州 350117
    2 厦门双十中学漳州分校 福建漳州 363107
  • 收稿日期:2017-09-26 出版日期:2019-02-26 发布日期:2019-03-12
  • 通讯作者: 杨标桂 E-mail:bgyang@163.com
  • 基金资助:
    国家自然科学基金(11761049);福建省自然基金(2016J01004);福建省自然基金(2017J01398)

Almost Contact Lagrangian Submanifolds of Nearly Kaehler $\mathbb{S}$3×$\mathbb{S}$3

Biaogui Yang1,*(),Jing Chen2   

  1. 1 College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117
    2 Zhangzhou Branch Compus of Xiamen Shuangshi Middle School, Fujian Zhangzhou 363107
  • Received:2017-09-26 Online:2019-02-26 Published:2019-03-12
  • Contact: Biaogui Yang E-mail:bgyang@163.com
  • Supported by:
    国家自然科学基金(11761049);福建省自然基金(2016J01004);福建省自然基金(2017J01398)

摘要:

对于Nearly Kaehler流形${\Bbb S}^3\times {\Bbb S}^3$上的一个拉格朗日子流形,将给出由$M$上的一个单位向量场典范引出的殆切触度量结构是$\alpha$-Sasakian, $\beta$-Kenmotsu以及cosymplectic的充要条件.另外,当这个殆切触度量结构为正规时,找出在什么条件下这个殆切触度量结构是$\frac{\sqrt{3}}{3}$-Sasakian, $\frac{\sqrt{3}}{3}$-Kenmotsu或cosymplectic结构.

关键词: Nearly Kaehler流形, 拉格朗日子流形, 殆切触度量结构, α-Sasakian结构, β-Kenmotsu结构, Cosymplectic结构

Abstract:

For a Lagrangian submanifold of the nearly Kaehler ${\Bbb S}^3\times {\Bbb S}^3$, we provide conditions for a canonically induced almost contact metric structure by a unit vector field, to be $\alpha$-Sasakian, $\beta$-Kenmotsu and cosymplectic. Furthermore, assuming the almost contact metric structure to be normal, we show the conditions when the contact metric structure is $\frac{\sqrt{3}}{3}$-Sasakian, $\frac{\sqrt{3}}{3}$-Kenmotsu or cosymplectic.

Key words: Nearly Kaehler manifold, Lagrangian submanifold, Almost contact metric structure, $\frac{\sqrt{3}}{3}$-Sasakian structure, $\frac{\sqrt{3}}{3}$-Kenmotsu structure, Cosymplectic structure

中图分类号: 

  • O186