数学物理学报 ›› 2019, Vol. 39 ›› Issue (1): 172-183.

• 论文 • 上一篇    下一篇

一个关于多元正则变化风险的渐近投资组合损失序的注记

邢国东1,2,*(),李效虎3,康素玲4,石黄萍1   

  1. 1 上饶师范学院 数学与计算机科学学院 江西 上饶 334001
    2 厦门大学 数学科学学院 福建 厦门 361005
    3 史蒂文斯理工学院 数学科学系 美国 新泽西霍博肯 07030
    4 合肥学院 数学与物理系 合肥 230601
  • 收稿日期:2017-06-30 出版日期:2019-02-26 发布日期:2019-03-12
  • 通讯作者: 邢国东 E-mail:xingguodxmu@sina.com
  • 基金资助:
    国家自然科学基金(11461009);2018年度安徽高校自然科学研究重点项目(KJ2018A0564);上饶师范学院自科项目(201804);上饶师范学院自科项目(201606)

A Note on Asymptotic Portfolio Loss Order of Multivariate Regularly Varying Risks

Guodong Xing1,2,*(),Xiaohu Li3,Suling Kang4,Huangping Shi1   

  1. 1 School of Mathematics & Computer Science, Shangrao Normal University, Jiangxi Shangrao 334001
    2 School of Mathematical Sciences, Xiamen University, Fujian Xiamen 361005
    3 Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
    4 Department of Mathematics & Physics, Hefei University, Hefei 230601
  • Received:2017-06-30 Online:2019-02-26 Published:2019-03-12
  • Contact: Guodong Xing E-mail:xingguodxmu@sina.com
  • Supported by:
    the NSFC(11461009);the Key Projects of Natural Science Research in Universityes of Anhui Province in 2018(KJ2018A0564);the Natural Science Foundation of Shangrao Normal University(201804);the Natural Science Foundation of Shangrao Normal University(201606)

摘要:

在多元正则变化结构下为了渐近量化极值投资组合损失的尾部概率的比值,该文研究了强渐近投资组合序.得到了此序的充分和必要准则.所得到的结果补充并改进了文献[8]所给出的对应的结果.也给出了一个相关的例子作为例证.

关键词: 正则谱测度, 极值风险指数, 多元正则变化, 随机序

Abstract:

This paper studies the stronger asymptotic portfolio loss order to asymptotically quantify the ratio of tail probabilities of extreme portfolio losses in the context of multivariate regular variation. We derive for this order the sufficient and necessary criteria, which supplement and improve the corresponding results due to Mainik and Rüschendorf (2012). Some relevant examples are presented as illustrations as well.

Key words: Canonical spectral measure, Extreme risk index, Multivariate regular variation, Stochastic orders

中图分类号: 

  • O211.9