1 |
Berres S , Burger R , Karlsen K H , et al. Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J Appl Math, 2003, 64 (1): 41- 80
|
2 |
Baranger C , Boudin L , Mancini S , et al. A modeling of biospray for the upper airways. ESAIM Proc, 2005, 14: 41- 47
doi: 10.1051/proc:2005004
|
3 |
Vinkovic I , Aguirre C , Simo S , et al. Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow. International Journal of Multiphase Flow, 2006, 32: 344- 364
doi: 10.1016/j.ijmultiphaseflow.2005.10.005
|
4 |
Carrillo J A , Goudon T . Stability and asymptotic analysis of a fluid-particle interaction model. Commun Partial Differ Equ, 2006, 31: 1349- 1379
doi: 10.1080/03605300500394389
|
5 |
Williams F A. Combustion Theory. 2nd ed. California: Benjamin Cummings Publ, 1985
|
6 |
Williams F A . Spray combustion and atomization. Phys Fluids, 1958, 1: 541- 555
|
7 |
Ballew J. Mathematical Topics in Fluid-Particle Interaction[D]. Maryland: University of Maryland, 2014
|
8 |
Fang D Y , Zi R Z , Zhang T , et al. Global classical large solutions to a 1D fluid-particle interaction model:The bubbling regime. J Math Phys, 2012, 53 (3): 41- 80
|
9 |
Song Y K , Yuan H J , Chen Y , et al. Strong solutions to a 1D fluid-particle interaction non-newtonian model:The bubbling regime. J Math Phys, 2013, 54 (9): 41- 80
|
10 |
Carrillo J A , Karper T , Trivisa K , et al. On the dynamics of a fluid-particle interaction model:the bubbling regime. Nonlinear Anal, 2011, 74: 2778- 2801
doi: 10.1016/j.na.2010.12.031
|
11 |
Lions P L. Mathematical Topics in Fluid-Particle Mechanics. Vol 2. Compressible Models. Oxford: Oxford Unicersity Press, 1998
|
12 |
Feireis E l , Novotny A , Petzeltova H , et al. On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J Math Fluid Dyn, 2001, 3: 358- 392
doi: 10.1007/PL00000976
|
13 |
Feireis E l , Petzeltova H . Large-time behavior of solutions to the Navier-Stokes equations of compressible flow. Arch Ration Mech Anal, 1999, 150: 77- 96
|
14 |
Ballew J , Trivisa K . Weakly dissipative solutions and weak-strong uniqueness for the Navier Stokes Smolunchowski system. Nonlinear Analysis Series A:Theory, Methods Applications, 2013, 91: 1- 19
|
15 |
Ballew J , Trivisa K . Viscous and inviscid models in fluid-particle interaction. Communications in Information Systems, 2013, 13: 45- 78
doi: 10.4310/CIS.2013.v13.n1.a2
|
16 |
Ballew J. Low Mach limits to the Navier Stokes Smolunchowski system//Ancona F, et al. Hyperbolic Problems: Theory, Numerics, Applications. Springfiled Amer Inst Math Sci, 2014, 8: 301-308
|
17 |
Galdi G P . An introduction to the mathematical theory of the Navier-Stokes equations. New York: Springer-Verlag, 1994
|
18 |
Cho Y , Kim H . On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscripta Math, 2006, 120: 91- 129
doi: 10.1007/s00229-006-0637-y
|
19 |
Cho Y , Choe H J , Kim H , et al. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Prues Appl, 2004, 83: 243- 275
doi: 10.1016/j.matpur.2003.11.004
|