数学物理学报 ›› 2018, Vol. 38 ›› Issue (6): 1122-1134.
收稿日期:
2017-04-11
出版日期:
2018-12-26
发布日期:
2018-12-27
通讯作者:
杨晓忠
E-mail:yxiaozh@ncepu.edu.cn
基金资助:
Yadi Zhao,Lifei Wu,Xiaozhong Yang*(),Shuzhen Sun
Received:
2017-04-11
Online:
2018-12-26
Published:
2018-12-27
Contact:
Xiaozhong Yang
E-mail:yxiaozh@ncepu.edu.cn
Supported by:
摘要:
对时间分数阶慢扩散方程提出一类数值差分方法:显-隐(Explicit-Implicit,E-I)和隐-显(Implicit-Explicit,I-E)差分方法.它是将古典显式格式与古典隐式格式相结合构造出的一类有效差分格式.理论证明了格式解的存在唯一性,用傅里叶方法证明了格式的稳定性和收敛性.数值试验验证了理论分析,表明E-I格式和I-E格式在具有良好的精度且无条件稳定的情况下,计算速度比隐式格式提高了75%.从而用此格式解决分数阶慢扩散方程是可行的.
中图分类号:
赵雅迪, 吴立飞, 杨晓忠, 孙淑珍. 时间分数阶慢扩散方程的一类有效差分方法[J]. 数学物理学报, 2018, 38(6): 1122-1134.
Yadi Zhao, Lifei Wu, Xiaozhong Yang, Shuzhen Sun. A Kind of Efficient Difference Method for the Time Fractional Sub-Diffusion Equation[J]. Acta mathematica scientia,Series A, 2018, 38(6): 1122-1134.
表 1
解析解与数值解比较"
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 时间/s | |
精确解 | 0.1097 | 0.1946 | 0.2356 | 0.2351 | 0.2030 | 0.1487 | 0.0787 | 174.6007 |
隐式格式解 | 0.1090 | 0.1933 | 0.2339 | 0.2334 | 0.2014 | 0.1476 | 0.0781 | 6.7294 |
E-I格式解 | 0.1100 | 0.1951 | 0.2362 | 0.2358 | 0.2036 | 0.1492 | 0.0790 | 3.8812 |
I-E格式解 | 0.1100 | 0.1952 | 0.2363 | 0.2359 | 0.2037 | 0.1493 | 0.0790 | 3.8755 |
表 3
E-I格式的误差和时间收敛阶(m=80)"
Implicit | E-I | |||||
Order2 | Order2 | |||||
200 | 2.545864e-4 | — | 1.094796e-4 | — | ||
400 | 1.047661e-4 | 1.280984 | 4.699933e-5 | 1.219950 | ||
800 | 4.284855e-5 | 1.289853 | 2.031905e-5 | 1.209807 | ||
1600 | 1.746390e-5 | 1.294870 | 8.822774e-6 | 1.203529 | ||
3200 | 7.102732e-6 | 1.297930 | 3.842242e-6 | 1.199284 | ||
200 | 8.475178e-5 | — | 3.620591e-5 | — | ||
400 | 3.023084e-5 | 1.487222 | 1.351384e-5 | 1.421788 | ||
800 | 1.072535e-5 | 1.494997 | 5.109668e-6 | 1.403136 | ||
1600 | 3.788677e-6 | 1.501259 | 1.950831e-6 | 1.389141 | ||
3200 | 1.332788e-6 | 1.507247 | 7.514643e-7 | 1.376312 | ||
200 | 4.222321e-5 | — | 1.920942e-5 | — | ||
400 | 1.399031e-5 | 1.593609 | 6.639797e-6 | 1.532603 | ||
800 | 4.601493e-6 | 1.604254 | 2.352434e-6 | 1.496985 | ||
1600 | 1.501415e-6 | 1.615779 | 8.522910e-7 | 1.464736 | ||
3200 | 4.849225e-7 | 1.630497 | 3.161945e-7 | 1.430534 |
1 | Metzler R , Klafter J . The random walk's guide to anomalous diffusion:a fractional dynamics approach. Physics Reports, 2000, 339 (1): 1- 77 |
2 | 陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模. 北京: 科学出版社, 2010 |
Chen W , Sun H G , Li X C , et al. Fractional Derivative Modeling of Mechanics and Engineering Problems. Beijing: Science Press, 2010 | |
3 | Vladimir V , Uchaikin . Fractional Derivatives for Physicist and Engneers, Volume Ⅱ:Applications. New York: Springer, 2013 |
4 |
Li J , Guo B L . Parameter identification in fractional differential equations. Acta Mathematica Scientia, 2013, 33 (3): 855- 864
doi: 10.1016/S0252-9602(13)60045-4 |
5 | Guo B L , Pu X K , Huang F H . Fractional Partial Differential Equations and Their Numerical Solutions. Beijing: Science Press, 2015 |
6 | 孙志忠, 高广花. 分数阶微分方程的有限差分方法. 北京: 科学出版社, 2015 |
Sun Z Z , Gao G H . Finite Difference Methods for Fractional Differential Equations. Beijing: Science Press, 2015 | |
7 |
覃平阳, 张晓丹. 空间-时间分数阶对流扩散方程的数值解法. 计算数学, 2008, 30 (3): 305- 310
doi: 10.3321/j.issn:0254-7791.2008.03.008 |
Tan P Y , Zhang X D . Numerical solution of space-time fractional convection diffusion equation. Computational Mathematics, 2008, 30 (3): 305- 310
doi: 10.3321/j.issn:0254-7791.2008.03.008 |
|
8 |
Tadjeran C , Meerschaert Mark M , Scheffler H P . A second-order accurate numerical approximation for the fraction diffusion equation. Journal of Computational Physics, 2006, 213 (1): 205- 213
doi: 10.1016/j.jcp.2005.08.008 |
9 |
Zhao Y , Zhang Y , Liu F , et al. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Computers and Mathematics with Applications, 2017, 73 (6): 1087- 1099
doi: 10.1016/j.camwa.2016.05.005 |
10 |
Chen C M , Liu F , Burrage K . Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Applied Mathematics and Computation, 2008, 198 (2): 754- 769
doi: 10.1016/j.amc.2007.09.020 |
11 |
Gao G H , Sun Z Z . A compact finite difference scheme for the fractional sub-diffusion equations. Journal of Computational Physics, 2011, 230 (3): 586- 595
doi: 10.1016/j.jcp.2010.10.007 |
12 | Liu F , Shen S , Anh V , et al. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. Anziam Journal, 2005, 46 (E): C488- C504 |
13 |
Shen S , Liu F , Anh V , et al. Implicit difference approximation for the time fractional diffusion equation. Journal of Applied Mathematics and Computing, 2006, 22 (3): 87- 99
doi: 10.1007/BF02832039 |
14 | Yuste S B . Weighted average finite difference methods for fractional diffusion equations. Journal of Computational Physics, 2004, 216 (1): 264- 274 |
15 | Yuste S B , Acedo L . An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. Siam Journal on Numerical Analysis, 2006, 42 (5): 1862- 1874 |
16 |
Lin Y , Xu C . Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 2007, 225 (2): 1533- 1552
doi: 10.1016/j.jcp.2007.02.001 |
17 | 张宝琳, 袁国兴, 刘兴平. 偏微分方程并行有限差分方法. 北京: 科学出版社, 1994 |
Zhang B L , Yuan G X , Liu X P . Parallel Finite Difference Methods for Partial Differential Equations. Beijing: Science Press, 1994 | |
18 |
Zhang Y N , Sun Z Z , Wu H W . Error estimates of Crank-Nicolson-type difference schemes for the sub-diffusion equation. SIAM Journal on Numerical Analysis, 2011, 49 (6): 2302- 2322
doi: 10.1137/100812707 |
[1] | 章志华,陈平炎. |
[2] | 朱志锋,张绍义. 用概率距离研究非时齐马氏链的收敛性[J]. 数学物理学报, 2018, 38(5): 963-969. |
[3] | 王丹妮,杨红丽,杨联贵. 一类完整Coriolis力作用下的高阶非线性Schrödinger方程的推导[J]. 数学物理学报, 2018, 38(5): 883-892. |
[4] | 谷海波,高彩霞. 基于Razumikhin-Type理论的中立性随机切换非线性系统的P阶矩稳定性与几乎必然稳定性[J]. 数学物理学报, 2018, 38(5): 970-983. |
[5] | 郑立飞,郭洁,吴美华,王小瑞,万阿英. 一类具有时滞的捕食者-猎物-共生者系统的研究[J]. 数学物理学报, 2018, 38(5): 1001-1013. |
[6] | 吴斌, 高莹, 闫林, 余军. 一类带有非奇异主部系数矩阵的2×2强耦合偏微分系统的卡勒曼估计及其反源问题[J]. 数学物理学报, 2018, 38(4): 779-799. |
[7] | 杨轩, 阮小娥, 王彭. 时变切换信号驱动的线性连续切换系统的迭代学习控制收敛性分析[J]. 数学物理学报, 2018, 38(3): 599-612. |
[8] | 王军礼, 张兴伟, 刘健. 可压缩Navier-Stokes方程平面Couette-Poiseuille流的线性不稳定性[J]. 数学物理学报, 2018, 38(2): 322-333. |
[9] | 王晚生, 钟鹏, 赵新阳. 非线性中立型变延迟微分方程的长时间稳定性[J]. 数学物理学报, 2018, 38(1): 96-109. |
[10] | 孟笑莹. 具有非单调发生率的时滞随机传染病模型分析[J]. 数学物理学报, 2017, 37(6): 1162-1175. |
[11] | 李海侠. 一类食物链模型正解的稳定性和唯一性[J]. 数学物理学报, 2017, 37(6): 1094-1104. |
[12] | 王春, 许天周. 拟Banach空间上含参数的二次-可加混合型函数方程的解和Hyers-Ulam-Rassias稳定性[J]. 数学物理学报, 2017, 37(5): 846-859. |
[13] | 陈红斌, 甘四清, 徐大, 彭玉龙. 二维分数阶发展型方程的正式的二阶BDF交替方向隐式紧致差分格式[J]. 数学物理学报, 2017, 37(5): 976-992. |
[14] | 杨纪华, 张二丽, 刘媚. 具时滞反馈金融系统的动力学分析与混沌控制[J]. 数学物理学报, 2017, 37(4): 767-782. |
[15] | 熊君, 李俊民, 何超. 一阶双曲型偏微分方程的模糊边界控制[J]. 数学物理学报, 2017, 37(3): 469-477. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 95
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|