1 |
Metzler R , Klafter J . The random walk's guide to anomalous diffusion:a fractional dynamics approach. Physics Reports, 2000, 339 (1): 1- 77
|
2 |
陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模. 北京: 科学出版社, 2010
|
|
Chen W , Sun H G , Li X C , et al. Fractional Derivative Modeling of Mechanics and Engineering Problems. Beijing: Science Press, 2010
|
3 |
Vladimir V , Uchaikin . Fractional Derivatives for Physicist and Engneers, Volume Ⅱ:Applications. New York: Springer, 2013
|
4 |
Li J , Guo B L . Parameter identification in fractional differential equations. Acta Mathematica Scientia, 2013, 33 (3): 855- 864
doi: 10.1016/S0252-9602(13)60045-4
|
5 |
Guo B L , Pu X K , Huang F H . Fractional Partial Differential Equations and Their Numerical Solutions. Beijing: Science Press, 2015
|
6 |
孙志忠, 高广花. 分数阶微分方程的有限差分方法. 北京: 科学出版社, 2015
|
|
Sun Z Z , Gao G H . Finite Difference Methods for Fractional Differential Equations. Beijing: Science Press, 2015
|
7 |
覃平阳, 张晓丹. 空间-时间分数阶对流扩散方程的数值解法. 计算数学, 2008, 30 (3): 305- 310
doi: 10.3321/j.issn:0254-7791.2008.03.008
|
|
Tan P Y , Zhang X D . Numerical solution of space-time fractional convection diffusion equation. Computational Mathematics, 2008, 30 (3): 305- 310
doi: 10.3321/j.issn:0254-7791.2008.03.008
|
8 |
Tadjeran C , Meerschaert Mark M , Scheffler H P . A second-order accurate numerical approximation for the fraction diffusion equation. Journal of Computational Physics, 2006, 213 (1): 205- 213
doi: 10.1016/j.jcp.2005.08.008
|
9 |
Zhao Y , Zhang Y , Liu F , et al. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Computers and Mathematics with Applications, 2017, 73 (6): 1087- 1099
doi: 10.1016/j.camwa.2016.05.005
|
10 |
Chen C M , Liu F , Burrage K . Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Applied Mathematics and Computation, 2008, 198 (2): 754- 769
doi: 10.1016/j.amc.2007.09.020
|
11 |
Gao G H , Sun Z Z . A compact finite difference scheme for the fractional sub-diffusion equations. Journal of Computational Physics, 2011, 230 (3): 586- 595
doi: 10.1016/j.jcp.2010.10.007
|
12 |
Liu F , Shen S , Anh V , et al. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. Anziam Journal, 2005, 46 (E): C488- C504
|
13 |
Shen S , Liu F , Anh V , et al. Implicit difference approximation for the time fractional diffusion equation. Journal of Applied Mathematics and Computing, 2006, 22 (3): 87- 99
doi: 10.1007/BF02832039
|
14 |
Yuste S B . Weighted average finite difference methods for fractional diffusion equations. Journal of Computational Physics, 2004, 216 (1): 264- 274
|
15 |
Yuste S B , Acedo L . An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. Siam Journal on Numerical Analysis, 2006, 42 (5): 1862- 1874
|
16 |
Lin Y , Xu C . Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 2007, 225 (2): 1533- 1552
doi: 10.1016/j.jcp.2007.02.001
|
17 |
张宝琳, 袁国兴, 刘兴平. 偏微分方程并行有限差分方法. 北京: 科学出版社, 1994
|
|
Zhang B L , Yuan G X , Liu X P . Parallel Finite Difference Methods for Partial Differential Equations. Beijing: Science Press, 1994
|
18 |
Zhang Y N , Sun Z Z , Wu H W . Error estimates of Crank-Nicolson-type difference schemes for the sub-diffusion equation. SIAM Journal on Numerical Analysis, 2011, 49 (6): 2302- 2322
doi: 10.1137/100812707
|