数学物理学报 ›› 2018, Vol. 38 ›› Issue (6): 1058-1066.

• 论文 • 上一篇    下一篇

分形空间上广义凸函数的新Simpson型不等式及应用

孙文兵(),刘琼   

  1. 邵阳学院理学院 湖南邵阳 422000
  • 收稿日期:2017-10-31 出版日期:2018-12-26 发布日期:2018-12-27
  • 作者简介:孙文兵, E-mail:swb0520@163.com
  • 基金资助:
    国家自然科学基金(61672356);邵阳市科技计划项目(2017GX09)

New Simpson Type Inequalities for Generalized Convex Functions on Fractal Space and Its Applications

Wenbing Sun(),Qiong Liu   

  1. School of Science, Shaoyang University, Hunan Shaoyang 422000
  • Received:2017-10-31 Online:2018-12-26 Published:2018-12-27
  • Supported by:
    Supported by the NSFC(61672356);the Science and Technology Plan Project of Shaoyang City(2017GX09)

摘要:

根据局部分数阶微积分理论以及分形实线的α(0 < α≤1)型集合\begin{document}$\mathbb{R}$\end{document}α上广义凸函数的定义,获得了几个涉及局部分数阶积分的Simpson型不等式.最后,给出了所得不等式在特殊均值和数值积分中的几个应用.

关键词: Simpson型不等式, 广义凸函数, 局部分数阶导数, 局部分数阶积分

Abstract:

In the paper, the authors use local fractional calculus theory and the definition of generalized convex function on the α type set of the real line numbers \begin{document}$\mathbb{R}$\end{document}α, some new Simpson-type inequalities involving local fractional integrals are established. Finally, some applications of our obtained inequalities to special means and numerical integration are given.

Key words: Simpson-type inequalities, Generalized convex function, Local fractional derivative, Local fractional integral

中图分类号: 

  • O178