数学物理学报 ›› 2018, Vol. 38 ›› Issue (5): 954-962.

• 论文 • 上一篇    下一篇

一类修正的非单调谱共轭梯度法及其在非负矩阵分解中的应用

李向利1,*(),师娟娟2,董晓亮3   

  1. 1 桂林电子科技大学, 数学与计算科学学院, 广西密码学与信息安全重点实验室 广西桂林 541004
    2 桂林电子科技大学, 数学与计算科学学院, 广西自动检测技术与仪器重点实验室 广西桂林 541004
    3 北方民族大学数学与信息科学学院 银川 750021
  • 收稿日期:2016-10-24 出版日期:2018-11-09 发布日期:2018-11-09
  • 通讯作者: 李向利 E-mail:lixiangli@guet.edu.cn
  • 基金资助:
    国家自然科学基金(71561008);国家自然科学基金(11601012);广西自然科学基金(2018GXNSFAA138169);广西自动检测技术与仪器重点实验室基金(YQ16112);广西密码学与信息安全重点实验室研究课题(GCIS201708);宁夏自然科学基金(NZ17103)

A Class of Modified Non-Monotonic Spectral Conjugate Gradient Method and Applications to Non-Negative Matrix Factorization

Xiangli Li1,*(),Juanjuan Shi2,Xiaoliang Dong3   

  1. 1 School of Mathematics and Computing Science, Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guangxi Guilin 541004
    2 Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guangxi Guilin 541004
    3 School of Mathematics and Information Science, North Minzu University, Yinchuan 750021
  • Received:2016-10-24 Online:2018-11-09 Published:2018-11-09
  • Contact: Xiangli Li E-mail:lixiangli@guet.edu.cn
  • Supported by:
    the NSFC(71561008);the NSFC(11601012);the Guangxi Natural Science Foundation(2018GXNSFAA138169);the Guangxi Key Laboratory of Automatic Detection Technology and Instruments(YQ16112);the Guangxi Key Laboratory of Cryptography Security(GCIS201708);the Natural Science Foundation of Ningxia(NZ17103)

摘要:

谱共轭梯度算法是一类解决无约束优化问题的有效方法,它以共轭梯度法为基础,结合谱方法,保持了两种方法的计算优点.该文提出了一类修正的非单调谱共轭梯度算法,在满足一定的假设下,证明了算法的收敛性.此外,该文将所提出的算法应用于非负矩阵分解中,数值实验表明算法的效果是值得肯定的.

关键词: 无约束优化, 谱共轭梯度法, 非单调线搜索, 非负矩阵分解

Abstract:

Spectral conjugate gradient algorithm is an effective method to solve unconstrained optimization problems. It is based on the conjugate gradient method and combines the spectral method to maintain the advantages of the two methods. In this paper, we propose a class of modified non-monotonic spectral conjugate gradient algorithm, under certain assumptions, the convergence of the algorithm is proved. In addition, we applied the algorithm to the nonnegative matrix factorization, and the numerical results show that the algorithm is effective.

Key words: Unconstrained optimization, Spectral conjugate gradient method, Non monotone line search, Non negative matrix factorization

中图分类号: 

  • O221