数学物理学报 ›› 2018, Vol. 38 ›› Issue (5): 911-923.

• 论文 • 上一篇    下一篇

具有非局部源的p-Laplace方程解的爆破时间下界估计

孙宝燕()   

  1. 南京大学数学系 南京 210093
  • 收稿日期:2017-09-30 出版日期:2018-11-09 发布日期:2018-11-09
  • 作者简介:孙宝燕, E-mail: bysun@smail.nju.edu.cn
  • 基金资助:
    南京大学研究生科研创新基金(2016CL01)

Lower Bound of Blow-Up Time for a p-Laplacian Equation with Nonlocal Source

Baoyan Sun()   

  1. Department of Mathematics, Nanjing University, Nanjing 210093
  • Received:2017-09-30 Online:2018-11-09 Published:2018-11-09
  • Supported by:
    the Scientific Research Foundation of Graduate School of Nanjing University(2016CL01)

摘要:

该文考虑了三维空间中具有非局部源的p-Laplace方程分别在Dirichlet边界条件和Robin边界条件下解的爆破性质.通过构造辅助函数并利用微分不等式的技巧,得到了两种边界条件下方程解的爆破时间下界估计.另外,给出了方程解在L2-范数下不会发生爆破的充分条件.

关键词: p-Laplace方程, Dirichlet边界条件, Robin边界条件, 爆破, 爆破时间下界

Abstract:

In this paper, we consider an initial boundary value problem for a p-Laplacian equation under Dirichlet boundary condition or Robin boundary condition in three dimensional space. We use a differential inequality technique to determine a lower bound of blow-up time for the blow-up solution. In addition, we also give a sufficient condition which implies that blow-up does not occur.

Key words: p-Laplacian equation, Dirichlet boundary condition, Robin boundary condition, Blow up, Lower bound of blow-up time

中图分类号: 

  • O175