数学物理学报 ›› 2018, Vol. 38 ›› Issue (4): 810-822.

• 论文 • 上一篇    下一篇

一类带有慢变参数的sine-Gordon方程的单脉冲异宿轨道

廖暑芃1, 沈建和1,2   

  1. 1 福建师范大学数学与信息学院 福州 350117;
    2 福建省分析数学及其应用重点实验室 福州 350117
  • 收稿日期:2017-05-16 修回日期:2017-11-01 出版日期:2018-08-26 发布日期:2018-08-26
  • 通讯作者: 沈建和,E-mail:jhshen@fjnu.edu.cn E-mail:jhshen@fjnu.edu.cn
  • 基金资助:
    国家自然科学基金(11171082)、福建省自然科学基金(2015J01004)和福建省教育厅杰青、新世纪人才项目

One-Pulse Travelling Front Solutions of a sine-Gordon Equation with Slowly Varying Parameters

Liao Shupeng1, Shen Jianhe1,2   

  1. 1 School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350117;
    2 FJKLMAA, Fuzhou 350117
  • Received:2017-05-16 Revised:2017-11-01 Online:2018-08-26 Published:2018-08-26
  • Supported by:
    Supported by the NSFC (11171082), the Natural Science Foundation of Fujian Province (2015J01004) and the New Century Excellent Talents in Fujan Province

摘要: 基于Fenichel的几何奇异摄动理论,结合Melnikov方法,该文研究一类带慢变参数的sine-Gordon方程单脉冲波前解的存在性.首先,基于几何奇异摄动理论进行快慢分离,获得层系统和退化系统及其动力学;接着,引入Melnikov函数度量慢流形的稳定和不稳定流形的横截相交性,获得Take-off和Touch-down曲线的解析式.控制Take-off和Touch-down曲线使之分别与两个慢流形上鞍点的不稳定和稳定流形横截相交,从而得到奇异异宿轨道的存在性.经摄动,在该奇异异宿轨附近可获得异宿于系统两个不同鞍点的异宿轨道的存在性,从而上述带慢变参数的sine-Gordon方程的单脉冲波前解的存在性可得.最后,考虑了一个具体的例子,验证理论结果的正确性.

关键词: sine-Gordon方程, 几何奇异摄动理论, Melnikov函数, 单脉冲异宿轨道

Abstract: By combining Fenichel's geometric singular perturbation theory and Melnikov function method, this paper studies the existence of 1-pulse travelling front solutions of a sineGordon equation with slowly varying parameters. Firstly, we get the layer system and the reduced system respectively as well as their global dynamics via the technique of fast-slow separation, and then, we introduce the Melnikov function to determine the transversal intersections between the stable and unstable manifolds of the slow manifold, where we define the so-called Take-off and Touch-down curves. By controlling the Take-off and Touch-down curves to respectively intersect with the stable and unstable manifolds of the saddle points on the slow manifolds transversally, we get the singular heteroclinic orbits with transversality. Correspondingly we get the existence of heteroclinic orbits of the full singularly perturbed system by perturbing such singular heteroclinic orbits. Finally, we consider an example to verify the correctness of the obtained theoretical results.

Key words: sine-Gordon equation, Geometric singular perturbation theory, Melnikov function, 1-Pulse heteroclinic orbit

中图分类号: 

  • O175.12