数学物理学报 ›› 2018, Vol. 38 ›› Issue (4): 770-778.

• 论文 • 上一篇    下一篇

一类p-Laplacian方程单侧全局区间分歧及应用

沈文国   

  1. 兰州工业学院 基础学科部 兰州 730050
  • 收稿日期:2016-09-14 修回日期:2017-10-16 出版日期:2018-08-26 发布日期:2018-08-26
  • 作者简介:沈文国,E-mail:shenwg369@163.com
  • 基金资助:

    国家自然科学基金(11561038)和甘肃省自然科学基金(145RJZA087)

Interval Bifurcation for the p-Laplacian Equation and Its Applications

Shen Wenguo   

  1. Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050
  • Received:2016-09-14 Revised:2017-10-16 Online:2018-08-26 Published:2018-08-26
  • Supported by:

    Supported by the NSFC (11561038) and the National Science Foundation of Gansu (145RJZA087)

摘要:

首先建立一类含不可微非线性项p-Laplacian方程的单侧全局区间分歧定理.应用上述定理,可以证明一类半线性p-Laplacian方程主半特征值的存在性.进而,可研究下列半线性p-Laplacian方程结点解的存在性

其中1< p <+∞,ψps)=|s|p-2sar)∈ C[0,1],ar)≥ 0且在[0,1]的任何子集上成立ar)?0;λ是一个参数,u+=max{u,0},u-=-min{u,0},α,βC[0,1];对于s∈R+,都有fC(R,R)且sfs)> 0,R+=[0,+∞),并且满足f0 ∈[0,∞)且f ∈(0,∞)或者f0∈(0,∞]且f=0或者f0=0且f=∞,其中f0=fs)/sf=fs)/s.该文用单侧全局分歧技巧和连通分支极限证明结论.

关键词: 单侧全局区间分歧, 半线性问题, 结点解, p-Laplacian方程

Abstract:

In this paper, we establish a unilateral global interval bifurcation result for the p-Laplacian equation. Furthermore, we shall prove the existence of the principal half-eigenvalues for the half-linear p-Laplacian equation. Moreover, we also investigate the existence of radial nodal solutions for the problems.
,
where 1< p < +∞, ψp(s)=|s|p-2s, a(r) ∈ C[0, 1], a(r) ≥ 0,a(r)?0 on any subinterval of[0, 1]; λ is a parameter, u+=max{u, 0}, u-=-min{u,0}, α, βC[0, 1] are radially symmetric; fC(R, R), sf(s) > 0 for s∈R+, and f0 ∈[0, ∞) and f ∈ (0, ∞) or f0 ∈ (0, ∞] and f=0 or f0=0 and f=∞, where f0= f(s)/s, f=f(s)/s. We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.

Key words: Unilateral interval bifurcation, Half-quasilinear problems, Nodal solutions, p-Laplacian equation

中图分类号: 

  • O175.8