[1] |
Bebernes J, Bressan A. Thermal behavior for a confined reactive gas. J Differential Equations, 1982, 44(1):118-133
|
[2] |
Bebernes J, Eberly D. Mathematical Problems from Combustion Theory. New York:Springer-Verlag, 1989
|
[3] |
Pao C V. Nonlinear Parabolic and Elliptic Equations. New York:Plenum Press, 1992
|
[4] |
Straughan B. Explosive Instabilities in Mechanics. Berlin:Springer, 1998
|
[5] |
Quittner R, Souplet P. Superlinear Parabolic Problems:Blow-up, Global Existence and Steady States. Basel:Birkhauser, 2007
|
[6] |
Hu B. Blow-up Theories for Semilinear Parabolic Equations. Berlin:Springer, 2011
|
[7] |
Bandle C, Brunner H. Blow-up in diffusion equations:A survey. J Comput Appl Math, 1998, 97(1):3-22
|
[8] |
Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32(2):262-288
|
[9] |
Levine H A. Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:the method of unbounded Fourier coefficients. Math Ann, 1975, 214(3):205-220
|
[10] |
Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Neumann boundary conditions. Appl Anal, 2006, 85(10):1301-1311
|
[11] |
Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet boundary conditions. J Math Anal Appl, 2007, 328(2):1196-1205
|
[12] |
Quittner P. On global existence and stationary solutions for two classes of semilinear parabolic problems. Comment Math Univ Carolin, 1993, 34(1):105-124
|
[13] |
Song J C. Lower bounds for the blow-up time in a non-local reaction-diffusion problem. Appl Math Lett, 2011, 24(5):793-796
|
[14] |
Tang G S, Li Y F, Yang X T. Lower bounds for the blow-up time of the nonlinear non-local reaction diffusion problems in RN(N ≥ 3). Bound Value Probl, 2014, DOI:10.1186/s13661-014-0265-5
|
[15] |
Liu Y. Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions. Math Comput Modelling, 2013, 57(3/4):926-931
|
[16] |
Song X F, Lv X S. Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source. Appl Math Comput, 2014, 236:78-92
|
[17] |
Ma L W, Fang Z B. Blow-up analysis for a nonlocal reaction-diffusion equation with robin boundary conditions. Taiwanese J Math, 2017, 21(1):131-150
|
[18] |
Wang N. A remark on bounds for the blowup time of the solutions to quasilinear parabolic problems. Math Appl (Wuhan), 2015, 28(2):299-302
|
[19] |
Liu D M, Mu C L, Xin Q. Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32B(3):1206-1212
|
[20] |
Fang Z B, Yang R, Chai Y. Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption. Math Probl Eng, 2014, 2014(2):1-6
|
[21] |
Bao A G, Song X F. Bounds for the blow-up time of the solutions to quasi-linear parabolic problems. Z Angew Math Phys, 2014, 65(1):115-123
|
[22] |
Li F S, Li J L. Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions. J Math Anal Appl, 2012, 385(2):1005-1014
|
[23] |
Baghaei K, Hesaaraki M. Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations. C R Math Acad Sci Paris, 2013, 351(s19/20):731-735
|
[24] |
Fang Z B, Wang Y X. Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66(5):1-17
|
[25] |
Ma L W, Fang Z B. Blow-up phenomena for a semilinear parabolic equation with weighted inner absorption under nonlinear boundary flux. Math Methods Appl Sci, 2016, 40(1):1-14
|
[26] |
Ma L W, Fang Z B. Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux. Nonlinear Anal Real World Appl, 2016, 32:338-354
|
[27] |
Wang N, Song X F, Lv X S. Estimates for the blow-up time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2015, 436(2):1180-1195
|