数学物理学报 ›› 2018, Vol. 38 ›› Issue (3): 514-526.

• 论文 • 上一篇    下一篇

带类p(x)-拉普拉斯算子的双非局部问题的无穷多解

张申贵   

  1. 西北民族大学数学与计算机科学学院 兰州 730030
  • 收稿日期:2016-09-14 修回日期:2017-10-16 出版日期:2018-06-26 发布日期:2018-06-26
  • 作者简介:张申贵,E-mail:zhangshengui315@163.com
  • 基金资助:
    国家自然科学基金(31260098)、甘肃省科技计划项目(1610RJZA102)和中央高校基本科研业务专项经费(31920170147)

Infinitely Many Solutions for a Bi-Nonlocal Problem Involving p(x)-Laplacian-Like Operator

Zhang Shengui   

  1. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030
  • Received:2016-09-14 Revised:2017-10-16 Online:2018-06-26 Published:2018-06-26
  • Supported by:
    Supported by the NSFC (31260098), the Science and Technology Planning Project of Gansu Province (1610RJZA102) and the Fundamental Research Funds for the Central Universities (31920170147)

摘要: 该文运用变分方法研究一类带类px)-拉普拉斯算子的双非局部狄利克雷问题.利用喷泉定理和对称山路定理,得到了此类问题一列高能量和低能量解的存在性.

关键词: 变分方法, 临界点, p(x)-拉普拉斯算子, 非局部问题, 弱解

Abstract: In this article, we study a class of bi-nonlocal Dirichlet problem involving p(x)-Laplacian-like operator via variational methods. Using the fountain theorem and the symmetric mountain pass theorem, the existence of a sequence of high and low energy solutions for this problem are obtained, respectively.

Key words: Variational methods, Critical point, p(x)-Laplacian-like operator, Nonlocal problem, Weak solutions

中图分类号: 

  • O177.91