数学物理学报 ›› 2018, Vol. 38 ›› Issue (3): 496-513.

• 论文 • 上一篇    下一篇

一类具有非线性发生率与时滞的非局部扩散SIR模型的行波解

邹霞, 吴事良   

  1. 西安电子科技大学数学与统计学院 西安 710071
  • 收稿日期:2016-08-31 修回日期:2017-08-26 出版日期:2018-06-26 发布日期:2018-06-26
  • 通讯作者: 吴事良 E-mail:slwu@xidian.edu.cn
  • 作者简介:邹霞,E-mail:770572241@qq.com
  • 基金资助:
    国家自然科学基金(11671315)和陕西省自然科学基金(2017JM1003)

Traveling Waves in a Nonlocal Dispersal SIR Epidemic Model with Delay and Nonlinear Incidence

Zou Xia, Wu Shiliang   

  1. School of Mathematics and Statistics, Xidian University, Xi'an 710071
  • Received:2016-08-31 Revised:2017-08-26 Online:2018-06-26 Published:2018-06-26
  • Supported by:
    Supported by the NSFC (11671315) and the Natural Science Foundation of Shaanxi Province (2017JM1003)

摘要: 该文研究了一类具有非线性发生率与时滞的非局部扩散SIR传染病模型的行波解问题.利用基本再生数R0和最小波速c*判定行波解的存在与否.首先,当c>c*R0>1时,通过对一个截断问题使用Schauder不动点定理以及取极限的方法证明了所研究模型的行波解的存在性.其次,当0 < c < c*R0>1或R0 ≤ 1时,利用双边拉普拉斯变换的性质证明了行波解的不存在性.

关键词: 非局部扩散, 行波解, SIR模型, Schauder不动点定理

Abstract: This paper is concerned with the traveling waves of a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence. The threshold dynamics are determined by the basic reproduction number R0 and the minimal wave speed c*. First, when c > c*, R0 > 1, the existence of the traveling waves is proved by applying Schauder's fixed point theorem and a limiting argument. Then, when 0 < c < c*, R0 > 1 or R0 ≤ 1, the non-existence of traveling wave solutions is established by two-side Laplace transform.

Key words: Non-local dispersal, Traveling wave solution, SIR model, Schauder's fixed point theorem

中图分类号: 

  • O175.14