数学物理学报 ›› 2018, Vol. 38 ›› Issue (3): 484-495.

• 论文 • 上一篇    下一篇

一类内部具有无穷多个不连续点Sturm-Liouville算子的亏指数

赵迎春1,2, 孙炯2   

  1. 1 内蒙古大学数学科学学院 呼和浩特 010021;
    2 赤峰学院数学与统计学院 内蒙古赤峰 024000
  • 收稿日期:2017-02-11 修回日期:2017-10-30 出版日期:2018-06-26 发布日期:2018-06-26
  • 通讯作者: 赵迎春 E-mail:Yingchun_1983@126.com
  • 作者简介:孙炯,E-mail:masun@imu.edu.cn
  • 基金资助:
    国家自然科学基金(11561050,11702038)

The Deficiency Index of a Class of Sturm-Liouville Operators with an Infinite Number of Interior Discontinuous Points

Zhao Yingchun1,2, Sun Jiong2   

  1. 1 School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021;
    2 School of Mathematics and Statistics, Chi Feng University, Inner Mongolia Chifeng 024000
  • Received:2017-02-11 Revised:2017-10-30 Online:2018-06-26 Published:2018-06-26
  • Supported by:
    Supported by the NSFC (11561050, 11702038)

摘要: 该文研究了一类内部具有无穷多个不连续点SturmLiouville问题.首先,构造了新的Hilbert空间,并其上定义了与不连续条件有关的最小算子和最大算子.进一步地,在新空间框架下,讨论了与不连续条件相关联的最小算子亏指数.

关键词: Sturm-Liouville算子, 不连续性, 不连续条件, 亏指数

Abstract: In this paper, we study a class of Sturm-Liouville problems with an infinite number of interior discontinuous points, i.e., Sturm-Liouville problems with an infinite number of discontinuous conditions at interior points. Firstly, we construct a new Hilbert space associated with the discontinuous conditions and define the maximal and minimal operators associated with the discontinuous conditions in the new Hilbert space. And then we discuss the deficiency index of the minimal operator associated with the discontinuous conditions in the new Hilbert space.

Key words: Sturm-Liouville operator, Discontinuity, Discontinuous condition, Deficiency index

中图分类号: 

  • O175.1