[1] Adamowicz T, Harjulehto P, Hästö P. Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math Scand, 2015, 116(1):5-22 [2] Almeida A, Hästö P. Besov spaces with variable smoothness and integrability. J Funct Anal, 2010, 258(5):1628-1655 [3] Bahouri H, Gérard P, Xu C J. Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg. J Anal Math, 2000, 82:93-118 [4] Besov O V. Embeddings of spaces of differentiable functions of variable smoothness. Tr Mat Inst Steklova, 1997, 214:25-58 [5] Besov O V. On spaces of functions of variable smoothness defined by pseudodifferential operators. Tr Mat Inst Steklova, 1999, 227:56-74 [6] Besov O V. Equivalent normings of spaces of functions of variable smoothness. Dokl Akad Nauk, 2003, 391(5):583-586 [7] Cruz-Uribe D, Fiorenza A, Martell J M, Pérez C. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31(1):239-264 [8] Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces. Boston:Birkhauser, 2013 [9] Diening L, Hästö P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256(6):1731-1768 [10] Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Princeton:Princeton Univ Press, 1982 [11] Führ H, Mayeli A. Homogeneous Besov spaces on Stratified Lie groups and their wavelet characterization. J Funct Spaces Appl, 2012, Article ID:523586 [12] Grafakos L. Modern Fourier Analysis. New York:Springer-Verlag, 2008 [13] Han Y S, Müller D, Yang D C. A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces. Abstr Appl Anal, 2008, Article ID:893409 [14] Han Y S, Yang D C. Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces. Stud Math, 2003, 156(1):67-97 [15] Hu G R. Homogeneous Triebel-Lizorkin spaces on stratified Lie groups. J Funct Spaces Appl, 2013, Article ID:475103 [16] Hytönen T, Kairema A. Systems of dyadic cubes in a doubling metric space. Colloq Math, 2012, 126(1):1-33 [17] Rychkov V S. On a theorem of Bui, Paluszyński, and Taibleson. Proc Steklov Inst Math, 1999, 227:280-292 [18] Schneider R, Reichmann O, Schwab C. Wavelet solution of variable order pseudodifferential equations. Calcolo, 2010, 47(2):65-101 [19] Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton:Princeton Univ Press, 1971 [20] Triebel H. Theory of Function Spaces. Boston:Birkhäuser, 1983 [21] Xu J S. Variable Besov and Triebel-Lizorkin spaces. Ann Acad Sci Fenn Math, 2008, 33(2):511-522 [22] Xu J S. The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces. Integral Transforms Spec Funct, 2008, 19(8):599-605 [23] Xu J S. An atomic decomposition of variable Besov and Triebel-Lizorkin spaces. Armen J Math, 2009, 2(1):1-12 [24] Yang D C. Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type. Sci China Math, 2003, 46(2):187-199 [25] Yang D C, Zhuo C Q, Yuan W. Besov-type spaces with variable smoothness and integrability. J Funct Anal, 2015, 269(6):1840-1898 [26] Yang D C, Zhuo C Q, Yuan W. Triebel-Lizorkin-type spaces with variable exponents. Banach J Math Anal, 2015, 9(4):146-202 |