[1] Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53:249-315 [2] Kaup D J, Newell A. An exact solution for a derivative nonlinear Schrödinger equation. J Math Phys, 1978, 19:798-801 [3] Wadati M, Konno K, Ichikawa Y H. New integrable nonlinear evolution equations. J Phys Soc Jpn, 1979, 47:1698-1700 [4] Fokas A S, Fuchssteiner B. The hierarchy of the Benjamin-Ono equation. Phys Lett A, 1981, 86:341-345 [5] Boiti M, Pempinelli F, Tu G Z. The nonlinear evolution equations related to the Wadati-Konno-Ichikawa spectral problem. Prog Theor Phys, 1983, 69:48-64 [6] Gerdjikov V S, Ivanov M I. The quadratic bundle of general form and the nonlinear evolution equations. I. Expansions over the "squared" solutions are generalized Fourier transforms. Bulgarian J Phys, 1983, 10:13-26 [7] Antonowicz M, Fordy A P. Coupled KdV equations with multi-Hamiltonian structures. Physica D, 1987, 28:345-357 [8] Antonowicz M, Fordy A P. Coupled Harry Dym equations with multi-Hamiltonian structures. J Phys A:Math Gen, 1988, 21:L269-L275 [9] Tu G Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J Phys A:Math Gen, 1989, 22:2375-2392 [10] Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge:Cambridge University Press, 1991 [11] Ma W X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin Ann Math Ser A, 1992, 13:115-123 [12] Ma W X, Zhou R G. A coupled AKNS-Kaup-Newell soliton hierarchy. J Math Phys, 1999, 40:4419-4428 [13] Yan Z Y, Zhang H Q. A hierarchy of generalized AKNS equations, N-Hamiltonian structures and finite-dimensional involutive systems and integrable systems. J Math Phys, 2001, 42:330-339 [14] Xu X X. A generalized Wadati-Konno-Ichikawa hierarchy and new finite-dimensional integrable systems. Phys Lett A, 2002, 301:250-262 [15] Ma W X, Zhou R G. Adjoint symmetry constraints of multicomponent AKNS equations. Chin Ann Math Ser B, 2002, 23:373-384 [16] Ma W X, Zhou R G. Adjoint symmetry constraints leading to binary nonlinearization. J Nonl Math Phys, 2002, 9(Supplement):106-126 [17] Xu X X. A generalized Wadati-Konno-Ichikawa hierarchy and its binary nonlinearization by symmetry constraints. Chaos, Solitons and Fractals, 2003, 15:475-486 [18] Guo F G, Zhang Y F. A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling. J Math Phys, 2003, 44:5793-5803 [19] Zhang Y F. A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system. Chaos, Solitons and Fractals, 2004, 21:305-310 [20] Guo F K, Zhang Y F, Yan Q Y. New simple method for obtaining integrable hierarchies of soliton equations with multicomponent potential functions. Inter J Theor Phys, 2004, 43:1139-1146 [21] Xia T C, Yu F J, Chen D Y. The multi-component generalized Wadati-Konno-Ichikawa (WKI) hierarchy and its multi-component integrable couplings system with two arbitrary functions. Chaos, Solitons and Fractals, 2005, 24:877-883 [22] Guo F K, Zhang Y F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J Phys A:Math Gen, 2005, 38:8537-8548 [23] Xia T C, You F C. The multi-component TA hierarchy and its multi-component integrable couplings system with six arbitrary functions. Chaos, Solitons and Fractals, 2005, 26:605-613 [24] Ma W X, Chen M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J Phys A:Math Gen, 2006, 39:10787-10801 [25] Ma W X, Xu X X, Zhang Y F. Semi-direct sums of Lie algebras and continuous integrable couplings. Phys Lett A, 2006, 351:125-130 [26] Ma W X. A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order. Phys Lett A, 2007, 367:473-477 [27] Guo F K, Zhang Y F. Two unified formulae. Phys Lett A, 2007, 366:403-410 [28] Guo F K, Zhang Y F. The integrable coupling of the AKNS hierarchy and its Hamiltonian structure. Chaos, Solitons and Fractals, 2007, 32:1898-1902 [29] Guo F K, Zhang Y F. The computational formula on the constant γ appeared in the equivalently used trace identity and quadratic-form identity. Chaos, Solitons and Fractals, 2008, 38:499-505 [30] Zhu F B, Ji J, Zhang J B. Two hierarchies of multi-component Kaup-Newell equations and theirs integrable couplings. Phys Lett A, 2008, 372:1244-1249 [31] Baldwin D E, Hereman W. A symbolic algorithm for computing recursion operators of nonlinear partial differential equations. Inter J Comput Math, 2010, 87:1094-1119 [32] Yu F J. Adjoint symmetry constraints and integrable coupling system of multicomponent KN equations. Inter J Modern Phys B, 2011, 25:2841-2852 [33] Tam Hon-Wah, Zhang Y F. An integrable system and associated integrable models as well as Hamiltonian structures. J Math Phys, 2012, 53:103508 [34] Zhu X Y, Zhang D J. Lie algebras and Hamiltonian structures of multi-component Ablowitz-Kaup-Newell-Segur hierarchy. J Math Phys, 2013, 54:053508 [35] He B Y, Chen L Y, Ma L L. Two soliton hierarchies associated with so(4) and the applications of su(2)⊗ su(2)≌ so(4). J Math Phys, 2014, 55:093510 [36] Ma W X. An integrable counterpart of the D-AKNS soliton hierarchy from so(3, R). Phys Lett A, 2014, 378:1717-1720 [37] Shen S F, Jiang L Y, Jin Y Y, Ma W X. New soliton hierarchies associated with the Lie algebra so(3, R) and their bi-Hamiltonian structures. Rep Math Phys, 2015, 75:113-133 [38] Zhu S D, Shen S F, Jin Y Y, Li C X, Ma W X. New soliton hierarchies associated with the real Lie algebra so(4, R). Math Mech Appl Sci, 2017, 40:680-698 |