数学物理学报 ›› 2018, Vol. 38 ›› Issue (1): 122-133.

• 论文 • 上一篇    下一篇

Rn空间中带有密度函数的四阶粘弹方程的一致衰减性

冯保伟1, 苏克勤2   

  1. 1. 西南财经大学经济数学学院 成都 611130;
    2. 河南农业大学信息与管理科学学院 郑州 450046
  • 收稿日期:2016-10-28 修回日期:2017-04-01 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 冯保伟 E-mail:bwfeng@swufe.edu.cn
  • 作者简介:苏克勤,keqinsu@hotmail.com
  • 基金资助:
    国家自然科学基金(11701465),中内高校基本科研业务费(JBK170127)和河南省高等学校重点科研项目(16A110032)

Uniform Decay for a Fourth-Order Viscoelastic Equation with Density in Rn

Feng Baowei1, Su Keqin2   

  1. 1. Department of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130;
    2. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046
  • Received:2016-10-28 Revised:2017-04-01 Online:2018-02-26 Published:2018-02-26
  • Supported by:
    Supported by the NSFC (11701465), the Fundamental Research Funds for the Central Universities (JBK170127) and the Key University Science Research Project of Henan Province (16A110032)

摘要: 该文研究了一个Rnn≥4)空间中带有密度函数的四阶粘弹方程.为了弥补Poincaré不等式在Rn空间中的不足,作者引入了一个加权空间.在对松弛函数适当的假设下,作者利用能量扰动的方法建立了初边值问题解的一致衰减性结果,并且该结果推广了前人的结果.

关键词: 能量衰减, 四阶方程, 加权空间, 密度

Abstract: In this paper, we investigate a fourth-order linear viscoelastic equation with density in the whole space Rn (n ≥ 4). To compensate the lack of Poincaré's inequality in Rn, we consider the solutions in weighted spaces. Under suitable assumptions on the relaxation function, we establish a general decay result of solution for the initial value problem by using energy perturbation method. Our result extends earlier results.

Key words: Energy decay, Fourth-order equation, Weighted space, Density

中图分类号: 

  • O175.21