[1] Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math, 1990, 18:18-56 [2] Saker S H, Agarwal R P, O'Regan D. Oscillation of second-order damped dynamic equations on time scales. J Math Anal Appl, 2007, 330:1317-1337 [3] Erbe L, Hassan T S, Peterson A. Oscillation criteria for nonlinear damped dynamic equations on time scales. Apple Math Comput, 2008, 203:343-357 [4] Chen W, Han Z, Sun S, et al. Oscillation behavior of a class of second-order dynamic equations with damping on time scales. Discrete Dyn Nat Soc, 2010, Art ID:907130 [5] 张全信, 高丽. 时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则. 中国科学:数学, 2010, 40(7):673-682 Zhang Q X, Gao L. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales. Sci Sin Math, 2010, 40(7):673-682 [6] 张全信, 高丽, 刘守华. 时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则(Ⅱ). 中国科学:数学, 2011, 41(10):885-896 Zhang Q X, Gao L, Liu S H. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales (Ⅱ). Sci Sin Math, 2011, 41(10):885-896 [7] 张全信, 高丽, 刘守华. 时间尺度上具阻尼项的二阶半线性时滞动力方程振动性的新结果. 中国科学:数学, 2013, 43(8):793-806 Zhang Q X, Gao L, Liu S H. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales. Sci Sin Math, 2013, 43(8):793-806 [8] Zhang Q X. Oscillation of second-order half-linear delay dynamic equations with damping on time scales. Journal of Computational and Applied Mathematics, 2011, 235:1180-1188 [9] 孙一冰, 韩振来, 孙书荣, 等. 时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性. 应用数学学报, 2013, 36(3):480-494 Sun Y B, Han Z L, Sun S R, et al. Oscillation of a class of second order half-linear neutral delay dynamic equations with damping on time scales. Acta Mathematicae Applicatae Sinica, 2013, 36(3):480-494 [10] Sahiner Y. Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales. Adv Diff Eq, 2006, 2006:065626 [11] Wu H W, Zhuang R K, Mathsen R M. Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl Math Comput, 2006, 178:321-331 [12] Saker S H. Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type. Dyn Sys Appl, 2006, 15:629-644 [13] Saker S H, Agarwal R P, O'Regan D. Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Applicable Analysis, 2007, 86:1-17 [14] Saker S H, O'Regan D. New oscillation criteria for second-order neutral function dynamic equation via the generalized Riccati substitution. Commun Nonlinear Sci Numer Simulat, 2010, 16:423-434 [15] Bohner M, Peterson A. Dynamic Equations on Time Scales:An Introduction with Applications. Boston:Birkhäuser, 2001 [16] 杨甲山. 时间测度链上具正负系数的二阶阻尼动力方程的振动准则. 数学物理学报,2014, 34A(2):393-408 Yang J S. Oscillation criteria for second-order dynamic equations with positive and negative coefficients and damping on time scales. Acta Mathematica Scientia, 2014, 34A(2):393-408 [17] 李同兴,韩振来,张承慧,等. 时间尺度上三阶Emden-Fowler动力方程的振动准则.数学物理学报, 2012, 32A(1):222-232 Li T X, Han Z L, Zhang C H, et al. Oscillation criteria for third-order Emden-Fowler delay dynamic equations on time scales. Acta Mathematica Scientia, 2012, 32A(1):222-232 [18] Saker S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J Comput Appl Math, 2006, 187:123-141 [19] Han Z L, Li T X, Sun S R, et al. Oscillation for second-order nonlinear delay dynamic equations on time scales. Advances in Difference Equations, 2009, 2009:756171 [20] Xing G J, Li T X, Zhang C H. Oscillation of higher-order quasi-linear neutral differential equations. Advances in Difference Equations, 2011, 2011:45 [21] Agarwal R P, Bohner M, Li T, et al. Oscillation criteria for second-order dynamic equations on time scales. Appl Math Lett, 2014, 31:34-40 [22] Han Z L, Li T X, Sun S R, et al. Oscillation behavior of third-order neutral Emden-Fowler delay dynamic equations on time scales. Advances in Difference Equations, 2010, Art ID:586312 [23] Grace S R, Agarwal R P, Kaymakcalan B, et al. Oscillation theorems for second order nonlinear dynamic equations. J Appl Math Comput, 2010, 32:205-218 [24] Yang J S, Qin X W. Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic equations with damping on time scales. Advances in Difference Equations, 2015, 2015:97 [25] Bohner M. Some oscillation criteria for first order delay dynamic equations. Far East J Appl Math, 2005, 18:289-304 [26] 杨甲山. 时间测度链上一类二阶Emden-Fowler型动态方程的振荡性. 应用数学学报, 2016, 39(3):334-350 Yang J S. Oscillation for a class of second-order emden-fowler dynamic equations on time scales. Acta Mathematicae Applicatae Sinica, 2016, 39(3):334-350 [27] Bohner M, LI T X. Kamenev-type criteria for nonlinear damped dynamic equations. Sci China Math, 2015, 58:1445-1452 [28] 杨甲山, 方彬. 时间测度链上一类二阶非线性时滞阻尼动力方程的振动性分析. 应用数学,2017, 30(1):16-26 Yang J S, Fang B. Oscillation analysis of certain second-order nonlinear delay damped dynamic equations on time scales. Mathematica Applicata, 2017, 30(1):16-26 |