[1] Roussarie R. Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem. Basel:Birkhuser Verlag, 1998 [2] Yakovenko S. On functions and curves defined by ordinary differential equations. Fields Institute Communications, 1997, 24:497-525 [3] Khovansky A G. Real analytic manifolds with finiteness properties and complex Abelian integrals. Funct Anal Appl, 1984, 18:119-128 [4] Varchenko A N. Estimate of the number of zeros of an Abelian integral depending on a parameter and limit cycles. Funct Anal Appl, 1984, 18(2):98-108 [5] Binyamini G, Novikov D, Yakovenko S. On the number of zeros of Abelian integrals:a constructive solution of the infinitesimal Hilbert sixteenth problem. Invent Math, 2010, 181(2):227-289 [6] Li W, Llibre J, Yang J, Zhang Z. Limit cycles bifurcating from the period annulus of quasi-homogeneous centers. J Dyn Diff Equat, 2009, 21(1):133-152 [7] Zhao Y, Zhang Z. Abelian integrals and period function for quasi-homogeneous Hamiltonian vector fields. Appl Math Lett, 2005, 18(5):563-569 [8] Gavrilov L, Giné J, Grau M. On the cyclicity of weight-homogeneous centers. J Differential Equations, 2009, 246(8):3126-3135 [9] Geng F, Lian H. Bifurcation of limit cycles from a quasi-homogeneous degenerate center. Int J Bifurcation Chaos, 2015, 25(1):1-8 [10] Giné J, Grau M, Llibre J. Limit cycles bifurcating from planar polynomial quasi-homogeneous centers. J Differential Equations, 2015, 259(12):7135-7160 [11] Li C, Li W, Llibre J, Zhang Z. Polynomial systems:a lower bound for the weakened 16th Hilbert problem. Extracta Math, 2001, 16(3):441-447 [12] Tang Y, Zhang X. Center of planar quinic quasihomogeneous polynomial differential systems. Disc Contin Dyn Syst, 2015, 35(5):2177-2191 [13] Dumortier F, Llibre J, Artes J C. Qualitative Theory of Planar Differential Systems. Berlin:Springer-Verlag, 2006 [14] Xiong Y, Han M. Planar quasi-homogeneous polynomial systems with a given weight degree. Disc Contin Dyn Syst, 2016, 36(7):4015-4025 |