[1] Duren P L. Univalent Functions. Grundlehren der MathematischenWissenschaften, Band 259. New York:Springer-Verlag, 1983 [2] Srivastava H M, Owa S. Current Topics in Analytic Function Theory. Singapore:World Scientific, 1992 [3] Owa S, Nunokawa M, Saitoh H, et al. Close-to-convexity, starlikeness, and convexity of certain analytic functions. Applied Mathematics Letters, 2002, 15(1):63-69 [4] Noor K I. On quasi-convex functions and related topics. International Journal of Mathematics and Mathematical Sciences, 1987, 10(2):241-258 [5] Ma W, Minda D. A Unified Treatment of Some Special Classes of Univalent Functions//Li Z, Ren F, Yang L, et al. Proceedings of the Conference on Complex Analysis. New York:International Press, 1994:157-169 [6] Sakaguchi K. On a certain univalent mapping. Journal of the Mathematical Society of Japan, 1959, 11(1):72-75 [7] El-Ashwah R M, Thomas D K. Some subclasses of closed-to-convex functions. Journal of the Ramanujan Mathematical Society, 1987, 2(1):85-100 [8] Wang Z G, Jiang Y P, Srivastava H M. Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function. Computers and Mathematics with Applications, 2009, 57(4):571-586 [9] Shi L, Wang Z G, Zeng M H. Some subclasses of multivalent spirallike meromorphic functions. Journal of Inequalities and Applications, 2013, 2013(1):336 [10] 彭娟, 刘文娟, 杨清. 与函数类Fp,kλ(α;a,c;h)有关的积分表示和卷积性质. 淮阴师范学院学报(自然科学版), 2012, 11(1):22-25 Peng J, Liu W J, Yang Q. Convolution and integral representation of the subclasses Fp,kλ(α;a,c;h) (in chinese). Journal of Huaiyin Teachers College (Natural Science), 2012, 11(1):22-25 [11] 彭志刚. 具有缺项系数的几类解析函数族的性质. 数学物理学报, 2008, 28A(4):661-669 Peng Z G. The properties of several classes of analytic functions with missing coefficients. Acta Mathematica Scientia, 2008, 28A(4):661-669 |