[1] 陈红斌, 陈传淼, 徐大. 一类偏积分微分方程的二阶全离散差分格式. 计算数学, 2006, 28(2):141-154 Chen H B, Chen C M, Xu D. A second-order fully discrete difference scheme for a partial integro-differential equation. Math Numer Sinica, 2006, 28(2):141-154 [2] Chen H B, Xu D. A compact difference scheme for an evolution equation with a weakly singular kernel, Numer Math Theor Meth Appl, 2012, 5(4):559-572 [3] Chen H B, Gan S Q, Xu D, Liu Q W. A second-order BDF compact difference scheme for fractional order Volterra equations. I J Comp Math, 2016, 93(7):1140-1154 [4] Chen H B, Xu D, Peng Y L. An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation. I J Comp Math, 2015, 92(10):2178-2197 [5] Chen H B, Xu D, Peng Y L. A second-order BDF alternating direction implicit difference scheme for the two-dimensional fractional evolution equation. Appl Math Modelling, 2017, 41(1):54-67 [6] Cuesta E, Lubich C, Palencia C. Convolution quadrature time discretization of fractional diffusion-wave equations. Math Comp, 2016, 76(254):673-696 [7] Fujita Y. Integro-differential equation which interpolates the heat equation and the wave equation. Osaka J Math, 1990, 27:319-327 [8] Fujita Y. Integro-differential equation which interpolates the heat equation and the wave equation (Ⅱ). Osaka J Math, 1990, 27:797-804 [9] Khebchareon M, Pani A K, Fairweather G. Alternating direction implicit Galerkin methods for an evolution equation with a positive-type memory term. J Sci Comp, 2015, 65(3):1166-1188 [10] Kim C H, Choi U J. Spectral collocation methods for a partial integro-differential equation with a weakly singular kernel. J Austral Math Soc Ser B, 1998, 39(3):408-430 [11] Li L M, Xu D. Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation. J Comp Phys, 2013, 236(1):157-168 [12] Li L M, Xu D, Luo M. Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J Comp Phys, 2013, 255(1):471-485 [13] Liao H L, Sun Z Z. Maximum error estimates of ADI and compact ADI methods for solving parabolic equations. Numer Meth PDEs, 2010, 26(1):37-60 [14] 刘发旺, 庄平辉, 刘青霞. 分数阶偏微分方程数值方法及其应用. 北京:科学出版社, 2015 Liu F W, Zhuang P H, Liu Q X. Numerical Methods and Its Application for Fractional Partial Differential Equations. Beijing:Science Press, 2015 [15] Lopez-Marcos J C. A difference scheme for a nonlinear partial integro-differential equation. SIAM J Numer Anal, 1990, 27(1):20-31 [16] Lubich C. Convolution quadrature and discretized operational calculus, I. Numer Math, 1988, 52(1):187-199 [17] Lubich C, Sloan I H, Thomee V. Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math Comp, 1996, 65(1):1-17 [18] Mclean W, Thomee V. Numerical solution of an evolution equation with a positive type memory term. J Austral Math Soc Ser B, 1993, 35(1):23-70 [19] Pani A K, Fairweather G, Fernandes R I. Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term. SIAM J Numer Anal, 2008, 46(1):344-364 [20] Pani A K, Fairweather G, Fernandes R I. ADI orthogonal spline collocation methods for parabolic partial integro-differential equations. IMA J Numer Anal, 2010, 30(1):248-276 [21] Pani A K, Fairweather G. An H1-Galerkin mixed finite element method for an evolution equation with a positive-type memory term. SIAM J Numer Anal, 2002, 40(4):1475-1490 [22] Podlubny I. Fractional Differential Equations. San Diego:Academic Press, 1999 [23] Ren J C, Sun Z Z. Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J Sci Comp, 2013, 56(2):381-408 [24] Ren J C, Sun Z Z, Zhao X. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J Comp Phys, 2013, 232(1):456-467 [25] 孙志忠. 偏微分方程数值解法(第二版). 北京:科学出版社, 2005 Sun Z Z. Numerical Methods for Partial Differential Equations (Second Edition). Beijing:Science Press, 2012 [26] 孙志忠, 高广花. 分数阶微分方程的有限差分方法. 北京:科学出版社, 2015 Sun Z Z, Gao G H. The Finite Difference Methods for Fractional Differential Equations. Beijing:Science Press, 2015 [27] Tang T. A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl Numer Math, 1993, 11(4):309-319 [28] Xu D. The global behavior of time discretization for an abstract Volterra equation in Hilbert space. Calcolo, 1997, 34(1):71-104 [29] Zhang Y N, Sun Z Z. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J Comp Phys, 2011, 230(24):8713-8728 [30] Zhang Y N, Sun Z Z, Wu H W. Error estimates of Crank-Nicolson type difference schemes for the subdiffusion equation. SIAM J Numer Anal, 2011, 49(6):2302-2322 [31] Zhang Y N, Sun Z Z, Zhao X. Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J Numer Anal, 2012, 50(3):1535-1555 [32] Zhang Y N, Sun Z Z. Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J Sci Comp, 2014, 59(1):104-128 |