[1] Aczél J, Dhombres J. Functionsl Equations in Several Variables. Cambridge:Cambridge Univ Press, 1989 [2] Benyamini Y, Lindenstrauss J. Geometric Nonlinear Functional Analysis. Providence:Amer Math Soc Colloq Publ, 2000 [3] Brzdȩk J, Jung S M. A note on stability of an operator linear equation of the second order. Abstr Appl Anal, 2011, 2011:1-15 [4] Brzdȩk J, Popa D, Xu B. On approximate solutions of the linear functional equation of higher order. J Math Anal Appl, 2011, 373:680-689 [5] Cholewa P W. Remark on the stability of functional equations. Aequat Math, 1984, 27:76-86 [6] Ciepliński K. Generalized stability of multi-additive mappings. Appl Math Lett, 2010, 23:1291-1294 [7] Ciepliński K. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey. Ann Funct Anal, 2012, 3(1):151-164 [8] Czerwik S. On the stability of the quadratic mapping in normed spaces. Abh Math Sem Univ Hamburg, 1992, 62:59-64 [9] Gǎvrutą P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl, 1994, 184:431-436 [10] Grabiec A. The generalized Hyers-Ulam stability of a class of functional equations. Publ Math Debrecen, 1996, 48:217-235 [11] Hatori O, Kobayasi K, Miura T, Takagi H, Takahasi S E. On the best constant of Hyers-Ulam stability. J Nonlinear Convex Anal, 2004, 5:387-393 [12] Hirasawa G, Miura T. Hyers-Ulam stability of a closed operator in a Hilbert space. Bull Korean Math Soc, 2006, 43:107-117 [13] Hyers D H. On the stability of the linear functional equation. Proc Natl Acad Sci USA, 1941, 27:222-224 [14] Kannappan P L. Quadratic functional equation and inner product spaces. Results Math, 1995, 27:368-372 [15] Najati A, Moghimi M B. Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces. J Math Anal Appl, 2008, 337:399-415 [16] Rassias T M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72:297-300 [17] Rolewicz S. Metric Linear Spaces. Warszawa:Pwn-Polish Sci Publ, 1984 [18] Skof F. Local properties an approximations of operators. Rend Sem Mat Fis Milano, 1983, 53:113-129 [19] Ulam S M. A Collection of Mathematical Problems. New York:Interscience, 1960 [20] Wang C, Xu T Z. Hyers-Ulam stability of differentiation operator on Hilbert spaces of entire functions. J Funct Spaces, 2014, 2014:1-6 [21] Wang C, Xu T Z. Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives. Appl Math, 2015, 60:383-393 [22] Wang C, Xu T Z. Hyers-Ulam stability of differential operators on reproducing kernel function spaces. Complex Anal Oper Theory, 2016, 10:795-813 [23] Wang C, Xu T Z. Hyers-Ulam stability of a class of fractional linear differential equationsz. Kodai Math J, 2015, 38:510-520 [24] Xu T Z, Wang C, Rassias T M. On the stability of multi-additive mappings in non-Archimedean normed spaces. J Comput Anal Appl, 2015, 18:1102-1110 [25] Xu T Z. Approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n-Banach spaces. Abstr Appl Anal, 2013, 2013:1-12 [26] Xu T Z. On the stability of multi-Jensen mappings in β-normed spaces. Appl Math Lett, 2012, 25:1866-1870 [27] 成立花, 连铁艳. Banach空间三次方程的稳定性问题. 数学物理学报, 2014, 34A(2):266-273 Cheng L H, Lian T Y. Stability of cubic functional equations in Banach spaces. Acta Math Sci, 2014, 34A(2):266-273 |