数学物理学报 ›› 2017, Vol. 37 ›› Issue (5): 834-845.

• 论文 • 上一篇    下一篇

一类非线性Keller-Segel方程的局部零能控性

张亮, 杨国朋   

  1. 武汉理工大学数学系 武汉 430070
  • 收稿日期:2016-11-18 修回日期:2017-04-16 出版日期:2017-10-26 发布日期:2017-10-26
  • 作者简介:张亮,E-mail:zhangl@whut.edu.cn;杨国朋,E-mail:102213587@qq.com
  • 基金资助:
    国家自然科学基金(61573012)和湖北省自然科学基金(2014CFB337)

Null Controllability of a Nonlinear Keller-Segel Equation

Zhang Liang, Yang Guopeng   

  1. Department of Mathematics, Wuhan University of Technology, Wuhan 430070
  • Received:2016-11-18 Revised:2017-04-16 Online:2017-10-26 Published:2017-10-26
  • Supported by:
    Supported by the NSFC(61573012) and the Hubei Natural Science Foundation (2014CFB337)

摘要: 该文研究一类由抛物方程和椭圆方程耦合的非线性Keller-Segel方程的局部零能控性.该方程不仅具有非线性的drift-diffuion项,而且具有非线性的人口增长项.作者利用抛物-椭圆结构的非局部特性将方程组化为单个非线性抛物型方程并利用Kakutani不动点定理证明了局部零能控性的存在性.

关键词: 局部零能控性, Keller-Segel方程, 能观性估计

Abstract: In this paper, we study the local controllability for a nonlinear Keller-Segel equation coupled by an elliptic partial differential equation and a parabolic one, in which nonlinearity lies both on its drift-diffusion term and population growth. We prove the local null controllability by Kakutani's fixed point theorem. The method is established on the nonlocal structure of the elliptic-parabolic equation so that it can be treated as a single nonlinear parabolic equation.

Key words: Null controllability, Keller-Segel equation, Observability estimate

中图分类号: 

  • O211.4