[1] Bonami A, Hilhorst D, Logak E, et al. Singular limit of a chemotaxis-growth model. Adv Differential Equations, 2001, 6:1173-1218 [2] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theor Biol, 1970, 26:399-415 [3] Hillen T, Painter K J. A user's guide to PDE models for chemotaxis. J Math Biol, 2009, 58:183-217 [4] Horstmann D. From 1970 until present:the Keller-Segel model in chemotaxis and its consequences. Jahresber DMV, 2003, 105:103-165 [5] Zhong X, Jiang S. Globally bounded in-time solutions to a parabolic-elliptic system modeling chemotaxis. Acta Mathematica Scientia, 2007, 27B:421-429 [6] Ryu S U, Yagi A. Optimal control of Keller-Segel equations. J Math Anal Appl 2001, 256:45-66 [7] Guo B Z, Zhang L. Local null controllability for a chemotaxis system of parabolic-elliptic type. Systems & Control Letters, 2014, 65:106-111 [8] Guo B Z, Zhang L. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Math Control Relat Fields, 2016, 6:143-165 [9] Barbu V. Controllability of parabolic and Navier-Stokes equations. Sci Math Jpn, 2002, 56:143-211 [10] Ammar-Khodja F, Benabdallah A, Gonzalez-Burgos M, etal. Recent results on the controllability of linear coupled parabolic problems:a survey. Math Control Relat Fields, 2011, 1:267-306 [11] Fernández-Cara E, Zuazua E. Null and approximate controllability for weakly blowing up semilinear heat equations. Ann Inst Henri Poincaré, Analyse non linéaire, 2000, 17:583-616 [12] Wang L, Wang G. The Bang-Bang principle of time optimal controls for the heat equation with internal controls. Systems & Control Letters, 2007, 56:709-713 [13] Wang G. L∞-Null Controllability for the heat equation and its consequences for the time optimal control problem. SIAM J Control & Optimization, 2008, 47:1701-1720 [14] Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm Pure Appl Math, 1959, 12:623-727 [15] Ladyzhenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and Quasi-linear Equations of Parabolic Type. Providence:AMS, 1968 [16] DiBenedetto E. Degenerate Parabolic Equations. New York:Springer-Verlag, 1993 [17] Wang L, Wang G. The optimal time control of a phase-field system. SIAM J Control & Optimization, 2006, 42:1483-1508 [18] Barbu V. Analysis and Control of Nonlinear Infinite-Dimensional Systems. Boston:Academic Press, 1993 [19] Rothe F. Global Solutions of Reaction-Diffusion systems. Berlin:Springer-Verlag, 1984 |