数学物理学报 ›› 2017, Vol. 37 ›› Issue (5): 825-833.

• 论文 • 上一篇    下一篇

一类三次Hamilton系统的极限环分支

张二丽1, 邢玉清2   

  1. 1. 郑州财经学院 信息工程学院 郑州 450044;
    2. 河南农业大学 理学院 郑州 450002
  • 收稿日期:2017-01-13 修回日期:2017-04-16 出版日期:2017-10-26 发布日期:2017-10-26
  • 作者简介:张二丽,E-mail:isszel@163.com;杨国朋,E-mail:issxyq@163.com
  • 基金资助:
    河南省高等学校重点科研项目(16A110038,17B110003)和河南省高等学校青年骨干教师培养计划项目(2016GGJS-190)

Limit Cycle Bifurcations for a Kind of Hamilton Systems of Degree Three

Zhang Erli1, Xing Yuqing2   

  1. 1. School of Information Engineering, Zhengzhou Institute of Finance and Economics, Zhengzhou 450044;
    2. College of Sciences, Henan Agricultural University, Zhengzhou 450002
  • Received:2017-01-13 Revised:2017-04-16 Online:2017-10-26 Published:2017-10-26
  • Supported by:
    Supported by the Key Program of Higher Education of Henan (16A110038, 17B110003) and the Cultivating Backbone Teachers Program of Higher Education of Henan (2016GGJS-190)

摘要: 利用Picard-Fuchs方程法得到了Abelian积分I(h)=∫Γhgx,y)dx-fx,y)dy的零点个数的上界,其中Γh是由Hx,y)=x2+y2+2xy+ax4+y4)=h定义的闭轨线,a>0,h∈(0,+∞),fx,y)和gx,y)是关于xyn次多项式.进而得到该系统极限环个数的上界.

关键词: Hamilton系统, Abelian积分, Picard-Fuchs方程, 极限环

Abstract: By using the Picard-Fuchs equation method, we obtain an upper bound of the number of zeros of Abelian integrals I(h)=∫Γhg(x,y)dx-f(x,y)dy, where Γh is the closed orbit defined by H(x,y)=x2+y2+2xy+1/a(x4+y4)=h, a>0,h∈(0,+∞),f(x,y) and g(x,y) are real polynomials in x and y of degree n. Therefore, we get the upper bound of the number of limit cycles of this system.

Key words: Hamilton system, Abelian integrals, Picard-Fuchs equation, Limit cycle

中图分类号: 

  • O175