[1] Cao L F, Dai Z H. A Liouville-type theorem for an integral equation on a half-space R+n. Journal of Mathematical Analysis and Applications, 2012, 389:1365-1373 [2] Damascelli L, Gladiali F. Some nonexistence results for positive solutions of elliptic equations in unbounded domains. Revista Matematica Iberoamericana, 2004, 20:67-86 [3] Dancer E N, Wei J, Weth T. A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Annales De Linstitut Henri Poincaré Non Linéar Analysis, 2010, 27:953-969 [4] Gidas B, Spruck J. A Priori bounds for positive solutions of nonlinear elliptic equations. Communications in Partial Differential Equations, 1981, 6:883-901 [5] Li Y Y. Remark on some conformally invariant integral equations:the method of moving spheres. Journal of the European Mathematical Society, 2004, 6:153-180 [6] Li Y Y, Zhang L. Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d'Analyse Mathématique, 2003, 90:27-87 [7] Li Y Y, Zhu M J. Uniqueness theorems through the method of moving spheres. Duke Mathematical Journal, 1995, 80:383-417 [8] Reichel W, Weth T. A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems. Mathematische Zeitschrift, 2009, 261:805-827 [9] Tang S F, Dou J B. Liouville type theorems for a system of integral equations on upper half space. Acta Mathematica Sinica, 2014, 30:261-276 [10] Fang Y Q, Chen W X. A Liouville type theorem for poly-harmonic Dirichlet problems in a half space. Advances in Mathematics, 2012, 229:2835-2867 [11] Dou J B, Li Y. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35:155-171 [12] Dou J B, Zhu M J. Sharp Hardy-Littlewood-Sobolev inequality on the upper half space. International Mathematics Research Notices, 2015, 2015:651-687 [13] Dou J B, Qu C Z. Classification of positive solutions for an elliptic systems with a higher-order fractional Laplacian. Pacific Journal of Mathematics, 2013, 261:311-334 [14] Dou J B. Liouville type theorems for the system of integral equations. Applied Mathematics and Computation, 2010, 217:2586-2594 [15] Chen W X, Li C M, Ou B. Classification of solutions for a system of integral equations. Communications in Partial Differential Equations, 2005, 30:59-65 [16] Hang F B. On the integral systems related to Hardy-Littlewood-Sobolev inequality. Mathematical Research Letters, 2007, 14:373-383 [17] Chen W X, Li C M. An integral system and the Lane-Emdem conjecture. Discrete and Continuous Dynamical Systems, 2009, 4:1167-1184 [18] Chen W X, Li C M, Ou B. Classification of solutions for an integral equation. Communications on Pure and Applied Mathematics, 2006, 59:330-343 [19] 赵金虎, 刘白羽, 徐尔. 一类完全非线性椭圆型方程组解的对称性. 数学物理学报, 2015, 35A:312-323 Zhao J H, Liu B Y, Xu E. The symmetry of solutions to a fully nonlinear elliptic equations. Acta Mathematica Scientia, 2015, 35A:312-323 [20] 胡良根. 非线性Hénon方程解的Liouville定理. 数学物理学报, 2016, 36A:639-648 Hu L G. Liouville type theorems of solutions for the nonlinear Hénon equations. Acta Mathematica Scientia, 2016, 36A:639-648 [21] Chen W X, Li C M. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4:1-8 [22] Chen W X, Li C M. Methods on Nonlinear Elliptic Equations. New York:Springfield, 2010 [23] Lieb E. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Annals of Mathematics, 1983, 118:349-374 [24] Chen W X, Fang Y Q, Yang R. Liouville theorems involving the fractional Laplacian on a half space. Advances in Mathematics, 2015, 274:167-198 [25] Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Communications on Pure and Applied Mathematics, 2007, 60:67-112 |