[1] Bourgain J B. On the maximale egodic theorem for certain subsets of the integers. Israel J Math, 1988, 61(1):39-72 [2] Bourgain J B. On the pointwise ergodic theorem on Lp. Israel J Math, 1988, 61(l):73-84 [3] Bourgain J B. On the pointwise ergodic theorem for arithmetic sets. Publ Math Inst Hautes Etudes Sei, 1989, 69:5-41 [4] Furstenberg H. Recurrence in Ergodic Theory and Combinational Number Theory. New Jersey Prineeton:Univ Press, 1967 [5] Walters P. An Introduction to Ergodic Theory. New York:Springer-Verlag, 1982 [6] 叶向东, 黄文, 邵松. 拓扑动力系统概论. 北京:科学出版社, 2008 Ye X D, Huang W, Shao S. An Introduction to Dynamical Systems. Beijing:Science Press, 2008 [7] Elton J. An ergodic theorem for iterated maps. Ergodic Theory and Dynamical Systems, 1987, 7(4):481-488 [8] 马东魁, 周作领. 迭代函数系统的遍历性质-Elton定理的改进. 应用数学, 2001, 14(4):46-50 Ma D K, Zhou Z L. Ergodic properties for IFS-the improvement of Elton theorem. Mathematica Applicata, 2001, 14(4):46-50 [9] O Hyong-chol, Ro Yong-hwa, Kil Won-gun. Ergodic theorem for infinite iterated functional systems. Appl Math Mech, 2005, 26(4):465-469 [10] Petersen K. Ergodic Theory. Cambridge:Cambridge University Press, 1983 [11] Rosenblatt J M, Wierdle M. Pointwise Ergodic Theorems via Harmonic Analysis. New York:Cambridge Univ Press, 1995 [12] Zhang M R, Zhou Z. Uniform ergodic theorems for discontinuous skew-product flows and applications to Schrödinger equations. Nonlinearity, 2011, 24(5):1539-1564 [13] Zhang M R, Zheng Z H, Zhou Z. Semi-uniform sub-additive ergodic theorems for discontinuous skewproduct transformations. Proc Amer Math Soc, 2013, 141(9):3195-3206 [14] AlSharawi Z, Angelos J, Elaydi S, Rakesh L. An extension of Sharkovsky's theorem to periodic difference equations. J Math Anal Appl, 2006, 316:128-141 [15] Cushing J M, Henson S M. The effect of periodic habit fluctuations on a nonlinear insect population model. J Math Biol, 1997, 36:201-226 [16] Cushing J M, Henson S M. A periodically forced Beverton-Holt equation. J Differ Equations Appl, 2002, 8:1119-1120 [17] Elaydi S, Sacker R. Global stability of periodic orbits of nonautonomous difference equations and population biology. J Differential Equations, 2005, 208:258-273 [18] Henson S M. Multiple attractors and resonance in periodically forced population. Phys D, 2000, 140:33-49 [19] Selgrade J F, Roberds H D. On the structure of attractors for discrete periodically forced systems with applications to population models. Phys D, 2001, 158:69-82 [20] Shi Y M, Chen G R. Chaos of time-varying discrete dynamical systems. J Difference Equations and Applications, 2009, 15:429-449 [21] Shi Y M. Chaos in nonautonomous discrete dynamical systems approached by their induced systems. Int J Bifur Chaos, 2012, 22:1250284 [22] Shi Y M, Zhang L J, Yu P P, Huang Q L. Chaos in periodic discrete systems. Int J Bifur Chaos, 2015, 25(1):1550010 [23] Tian C J, Chen G R. Chaos of a sequence of maps in a metric space. Chaos Solitons and Fractals, 2006, 28:1067-1075 [24] Franke J E, Selgrade J F. Attractor for periodic dynamical systems. J Math Anal Appl, 2003, 286:64-79 [25] Huang Q L, Shi Y M, Zhang L J. Sensitivity of non-autonomous discrete dynamical systems. Applied Mathematics Letters, 2015, 39:31-34 [26] Kolyada S, Snoha L. Topological entropy of non-autonomous dynamical systems. Random Comput Dynam, 1996, 4:205-233 [27] Zhang L J, Shi Y M. Time-varying perturbation of chaotic maps in Banach spaces. Int J Bifur Chaos, 2012, 22(3):1250066 [28] Huang Q L, Shi Y M, Zhang L J. Chaotification of non-autonomous discrete dynamical systems. Int J Bifur Chaos, 2011, 21:3359-3371 [29] Shao H, Shi Y M, Zhu H. Strong Li-Yorke chaos for time-varying discrete systems with A-coupledexpansion. Int J Bifur Chaos, 2015, 25:1550186 [30] Weidmann J. Linear Operators in Hilbert Spaces. New York:Springer-Verlag, 1980 |