数学物理学报 ›› 2017, Vol. 37 ›› Issue (1): 62-71.

• 论文 • 上一篇    下一篇

一类非线性反向热传导问题的Fourier正则化方法

杨帆1, 傅初黎2, 李晓晓1, 任玉鹏1   

  1. 1. 兰州理工大学理学院 兰州 730050;
    2. 兰州大学数学与统计学院 兰州 730000
  • 收稿日期:2016-05-19 修回日期:2016-10-17 出版日期:2017-02-26 发布日期:2017-02-26
  • 通讯作者: 杨帆 E-mail:yfggd114@163.com
  • 基金资助:

    国家自然科学基金(11561045)和兰州理工大学博士基金

Fourier Truncation Regularization for a Class of Nonlinear Backward Heat Equation

Yang Fan1, Fu Chuli2, Li Xiaoxiao1, Ren Yupeng1   

  1. 1. School of Science, Lanzhou University of Technology, Lanzhou 730050;
    2. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000
  • Received:2016-05-19 Revised:2016-10-17 Online:2017-02-26 Published:2017-02-26
  • Supported by:

    Supported by the NSFC (11561045) and the Doctor Fund of Lan Zhou University of Technology

摘要:

考虑了非线性抛物方程反向热传导问题,这类问题是不适定的,即问题的解不连续依赖于测量数据.利用Fourier截断正则化方法恢复其不适定性,得到问题的一个正则近似解,并且给出正则解和精确解之间具有Hölder型的误差估计.

关键词: 反向热传导方程, 非线性不适定问题, Fourier截断方法, 误差估计

Abstract:

In this paper, we consider the nonlinear backward heat equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A Fourier regularization method is proposed to solve this problem. For the regularization solution, the Hölder type stability estimate between the regularization solution and the exact solution is given.

Key words: Backward heat equation, Nonlinear ill-posed problem, Fourier truncation method, Error estimate

中图分类号: 

  • O175.25