数学物理学报 ›› 2017, Vol. 37 ›› Issue (1): 54-61.

• 论文 • 上一篇    下一篇

脉冲Neumann边值问题的新结果

陈会文1, 李建利1, 申建华2   

  1. 1. 湖南师范大学数学与计算机科学学院 长沙 410081;
    2. 杭州师范大学数学系 杭州 310036
  • 收稿日期:2016-05-17 修回日期:2016-11-08 出版日期:2017-02-26 发布日期:2017-02-26
  • 通讯作者: 李建利 E-mail:ljianli@sina.com
  • 基金资助:

    国家自然科学基金(11571088,11471109,11526111)、浙江省自然科学项目(LY14A010024)和湖南省教育厅项目(14A098)

New Results for Neumann Boundary Value Problem with Impulses via Variational Methods

Chen Huiwen1, Li Jianli1, Shen Jianhua2   

  1. 1. Department of Mathematics, College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081;
    2. Department of Mathematics, College of Science, Hangzhou Normal University, Hangzhou 310036
  • Received:2016-05-17 Revised:2016-11-08 Online:2017-02-26 Published:2017-02-26
  • Supported by:

    Supported by the NSFC (11571088, 11471109, 11526111), the Zhejiang Provincial Natural Science Foundation (LY14A010024) and Project Supported by Scientific Research Fund of Hunan Provincial Education Department (14A098)

摘要:

该文研究了脉冲Neumann边值问题三个解的存在性.利用一个最近的三临界点定理,该文建立了一个新的存在性准则保证脉冲Neumann边值问题至少存在三个解,推广和改进了一些最近的结果.此外,给出一些例子来验证主要结果.

关键词: 脉冲微分方程, 三临界点定理, Neumann边值问题

Abstract:

In this paper, we study the existence of three solutions for Neumann boundary value problem with impulses. By using a very recent three critical points theorem, we obtain a new criterion for guaranteeing that Neumann boundary value problem with impulses has three solutions. Some recent results are generalized and significantly improved. Some examples are also presented to illustrate our main results.

Key words: Impulsive differential equations, Three critical points theorem, Neumann boundary value problem

中图分类号: 

  • O175