数学物理学报 ›› 2017, Vol. 37 ›› Issue (1): 113-121.

• 论文 • 上一篇    下一篇

带有Logistic源的吸引-排斥趋化性系统的整体有界性和渐近行为

郜欣春1, 周健1, 田苗青1,2   

  1. 1. 郑州大学西亚斯国际学院文理学院 河南新郑 451150;
    2. 大连理工大学数学与科学学院 辽宁大连 116024
  • 收稿日期:2016-05-23 修回日期:2016-10-21 出版日期:2017-02-26 发布日期:2017-02-26
  • 通讯作者: 田苗青 E-mail:npctian@126.com
  • 作者简介:郜欣春,E-mail:gxc3270@163.com;周健,E-mail:gudanzj@163.com
  • 基金资助:

    河南省科技攻关项目(162102210103)

Global Boundedness and Asymptotic Behavior in an Attraction-Repulsion Chemotaxis System with Logistic Source

Gao Xinchun1, Zhou Jian1, Tian Miaoqing1,2   

  1. 1. School of Arts and Science, Sias International University, Henan Xinzheng 451150;
    2. School of Mathematical Sciences, Dalian University of Technology, Liaoning Dalian 116024
  • Received:2016-05-23 Revised:2016-10-21 Online:2017-02-26 Published:2017-02-26
  • Supported by:

    Supported by the Science and Technology Project of Henan Province (162102210103)

摘要:

该文研究了有界区域Ω⊂RNN≥1)中,齐次Neumann边值条件下带有Logistic源的吸引-排斥趋化性系统utu-▽·(uv)+μ1u(1-u),0=Δv+w-vwtw+▽·(wz)+μ2w(1-w),0=Δz-z+u,其中μ1μ2>0.证明了对任何非负初值u0x),w0x)∈CΩ),解(u(·,t),v(·,t),w(·,t),z(·,t))整体有界.此外,如果μ1μ2>(1)/(16),那么当t→∞时,解(u(·,t),v(·,t),w(·,t),z(·,t))在L模意义下渐近收敛于常数平衡解(1,1,1,1).

关键词: 吸引-排斥, 趋化性, Logistic源, 有界性, 渐近行为

Abstract:

This paper studies the attraction-repulsion chemotaxis system with logistic source utu-▽·(uv)+μ1u(1-u), 0=Δv+w-v, wtw+▽·(wz)+μ2w(1-w), 0=Δz-z+u, in bounded domain Ω⊂RN, N≥1, subject to the homogeneous Neumann boundary conditions, and μ1,μ2>0. It is proved that for any nonegative initial data u0(x),w0(x)∈C(Ω), the solution (u(·,t),v(·,t),w(·,t),z(·,t)) is globally bounded. Furthermore, if μ1,μ2>(1)/(16), then (u(·,t),v(·,t),w(·,t),z(·,t)) converges asymptotically to the constant equilibrium (1,1,1,1) in the L-norm as t→∞.

Key words: Attraction-repulsion, Chemotaxis, Logistic source, Boundedness, Asymptotic behavior

中图分类号: 

  • O175.29