数学物理学报 ›› 2016, Vol. 36 ›› Issue (5): 873-878.

• 论文 • 上一篇    下一篇

关于齐次Moran集的packing维数结果

胡晓梅1,2   

  1. 1. 华中师范大学数学与统计学学院 武汉 430079;
    2. 湖北科技学院 湖北咸宁 437100
  • 收稿日期:2015-12-09 修回日期:2016-09-09 出版日期:2016-10-26 发布日期:2016-10-26
  • 作者简介:胡晓梅,E-mail:xiaomeihu@163.com
  • 基金资助:

    国家自然科学基金(11271148)资助

Packing Dimensional Results for Homogeneous Moran Sets

Hu Xiaomei1,2   

  1. 1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079;
    2. School of Mathematics and Statistics, Hubei University of Science and Technology, Hubei Xianning 437100
  • Received:2015-12-09 Revised:2016-09-09 Online:2016-10-26 Published:2016-10-26
  • Supported by:

    Supported by the NSFC(11271148)

摘要:

该文构造了一类特殊的齐次Moran集,称为{mk}-拟齐次Cantor集,并讨论了它们的packing维数.通过调整序列{mk}k≥1的值,构造性证明了齐次Moran集packing维数的介值定理.此外,还得到了齐次Moran集的packing维数取得最小值的一个充分条件.

关键词: 齐次Moran集, {mk}-Moran集, {mk}-拟齐次Cantor集, Packing维数

Abstract:

In this paper, we construct a class of special homogeneous Moran set, called {mk}-quasi homogeneous Cantor set and discuss their packing dimensions. By adjusting the value of {mk}k≥1, we constructively prove the intermediate value theorem about packing dimensions of the homogeneous Moran sets. Moreover, we obtain a sufficient condition that the packing dimension of homogeneous Moran sets may get the minimum value.

Key words: Homogeneous Moran set, {mk}-Moran set, {mk}-Quasi homogeneous Cantor set, Packing dimension

中图分类号: 

  • O174.12