数学物理学报 ›› 2016, Vol. 36 ›› Issue (5): 879-885.

• 论文 • 上一篇    下一篇

关于P-极小动力系统的一些注记

吴新星1, 王建军2   

  1. 1. 西南石油大学理学院 成都 610500;
    2. 四川农业大学应用数学系 四川雅安 625014
  • 收稿日期:2015-12-07 修回日期:2016-06-18 出版日期:2016-10-26 发布日期:2016-10-26
  • 作者简介:吴新星,E-mail:wuxinxing5201314@163.com;王建军,E-mail:wangjianjun02@163.com
  • 基金资助:

    西南石油大学科研起航计划项目(2015QHZ029)、四川省教育厅科学研究基金(14ZB0007)和国家自然科学基金(11401495,11601449)资助

Some Remarks on P-Minimal Dynamical Systems

Wu Xinxing1, Wang Jianjun2   

  1. 1. School of Sciences, Southwest Petroleum University, Chengdu 610500;
    2. Department of Applied Mathematics, Sichuan Agricultural University, Sichuan Ya'an 625014
  • Received:2015-12-07 Revised:2016-06-18 Online:2016-10-26 Published:2016-10-26
  • Supported by:

    Supported by the Scientific Research Starting Project of Southwest Petroleum University (2015QHZ029), the Scientific Research Fund of the Sichuan Provincial Education Department (14ZB0007) and the NSFC (11401495, 11601449)

摘要:

该文研究迭代系统和乘积系统的熵极小性与混沌极小性.首先证明熵极小动力系统要么是syndetic-敏感的,要么是极小等度连续的.其次,得到对任意自然数n≥2,存在熵极小和混沌极小的动力系统,满足其n-次迭代系统既不是熵极小的也不是混沌极小的.同时,证明如果乘积系统是熵极小,则每个因子系统都是熵极小的;但是其逆不真.

关键词: 熵极小, 混沌极小, 迭代系统, 乘积系统

Abstract:

This paper is devoted to the study of entropy-minimality and chaos-minimality of iteration systems and product systems. Firstly, we prove that an entropy-minimal system is either syndetically sensitive or minimal and equicontinuous. Then, we obtain that for each positive integer n≥2, there is an entropy-minimal and chaos-minimal system such that its n-th iteration system is neither entropy-minimal nor chaos-minimal. Besides, we show that each factor system is entropy-minimal provided that the product system is entropy-minimal, and its converse is not true.

Key words: Entropy-minimality, Chaos-minimality, Iteration system, Product system

中图分类号: 

  • O189.1