数学物理学报 ›› 2016, Vol. 36 ›› Issue (2): 340-352.

• 论文 • 上一篇    下一篇

带有分数扩散的多维Burgers方程的衰减估计

余沛   

  1. 电子科技大学数学科学学院 成都 611731
  • 收稿日期:2015-09-11 修回日期:2016-01-28 出版日期:2016-04-25 发布日期:2016-04-25
  • 作者简介:余沛,yp9106@gmail.com
  • 基金资助:

    国家自然科学基金(11571063)资助

Decay of Weak Solutions to the Multi-Dimensional Burgers' Equation with Fractional Diffusion

Yu Pei   

  1. School of Mathematical Sciences, University Electronic Sciences & Technology, Chengdu 611731
  • Received:2015-09-11 Revised:2016-01-28 Online:2016-04-25 Published:2016-04-25
  • Supported by:

    Supported by the NSFC (11571063)

摘要:

研究了多维分数阶Burgers方程整体弱解的衰减性质.特别是,对u0L2Lp (p≠2)或u0L2Ln/2α-1分别建立了解的一致L2Lp (p>n/2α-1)衰减估计;而对u0仅仅属于L2,证明了解一致L2衰减的不存在性.

关键词: 分数阶Burgers方程, 一般初值, 最优衰减估计

Abstract:

In this paper, we investigate the time decay properties of the global weak solutions to the multi-dimensional Burgers' equation with fractional diffusion. We establish the optimal decay rates in L2 or Lp norm to solutions with initial data u0L2Lp for p≠2. If u0L2 only, we also show that it is impossible to obtain a uniform decay. Finally, for u0L2Ln/2α-1, we obtain a uniform decay estimate of solutions in Lp norm for any p>n/2α-1.

Key words: Fractional Burgers' equation, Large initial data, Optimal decay rate

中图分类号: 

  • O175.29