数学物理学报 ›› 2016, Vol. 36 ›› Issue (2): 353-361.

• 论文 • 上一篇    下一篇

有限矩条件下变化环境中分枝过程的收敛定理

王伟刚1, 杨广宇2, 高振龙3   

  1. 1. 浙江工商大学统计与数学学院 杭州 310018;
    2. 郑州大学数学学院 郑州 450001;
    3. 曲阜师范大学数学科学学院 山东 曲阜 273165
  • 收稿日期:2015-08-01 修回日期:2016-01-08 出版日期:2016-04-25 发布日期:2016-04-25
  • 作者简介:王伟刚,wwgys_2000@163.com;杨广宇,guangyu@zzu.edu.cn;高振龙,gaozhenlong0325@163.com
  • 基金资助:

    浙江省自然科学基金(LY13A010003);国家自然科学基金(11371321,11201420);教育部人文社科基金(10YJC790091);浙江省教育厅基金(Y201326953)和浙江工商大学人文社科基地(统计学)资助项目资助

Convergence of Branching Process in Varying Environments when All Moments Being Finite

Wang Weigang1, Yang Guangyu2, Gao Zhenlong3   

  1. 1 School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018;
    2 School of mathematics, Zhengzhou university, Zhengzhou 450001;
    3 School of mathematics, Qufu normal university, Shandong Qufu 273165
  • Received:2015-08-01 Revised:2016-01-08 Online:2016-04-25 Published:2016-04-25
  • Supported by:

    Supported by the Natural Science Foundation of Zhejiang Province (LY13A010003), the NSFC (11371321, 11201420), Humanities and Social Sciences Foundation of Ministry of Education (10YJC790091), Foundation of Zhejiang Educational Committee (Y201326953)

摘要:

该文研究了变化环境中分枝过程的收敛定理.在环境分布不独立的情况下,给定环境分布的矩条件,证明了WnLt收敛到W,并且W>0,a.s.,以此为基础,给出了该过程Zn的中心极限定理,以及log Zn的重对数律.这些结果对研究其它的渐进性质以及偏差理论都有重要的意义.

关键词: 随机环境, 分枝过程, 中心极限定理, 重对数律

Abstract:

In this paper, we studied convergence theorems of the branching processes in varying environments. When the environment is not independence, at the moment conditions of the environment, we prove that WnW and W>0, a.s. firstly, and then we give the central limit theorem of the process, at last we give the law of the iterated logarithm of log Zn. Those results are very important to the other asymptotic properties and deviations of the process.

Key words: Branching process, Random environments, Central limit theorem, LIL

中图分类号: 

  • O211.62