[1] Shapiro S, Teukolsky S. Black Holes, White Dwarfs, and Neutron Stars. New York:WILEY, 2004
[2] Luo T, Smoller J. Nonlinear dynamical stability of newtonian rotating and non-rotating white dwarfs and rotating supermassive stars. Comm Math Phys, 2008, 284:425-457
[3] Rein G. Non-Linear stability of gaseous stars. Arch Rational Mech Anal, 2003, 168:115-130
[4] Luo T, Smoller J. Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations. Arch Rational Mech Anal, 2009, 191:447-496
[5] Deng Y, Xiang J,Yang T. Blowup phenomena of solutions to Euler-Poisson equations. J Math Anal Appl, 2003, 286(1):295-306
[6] Ducomet B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Applied Mathematics Letters, 2005, 18:1190-1198
[7] Jang J, Tice I. Instability theory of the Navier-Stokes-Poisson equations. Analysis & PDE, 2013, 6(5):1121-1181
[8] Zhang T, Fang D. Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients. Arch Rational Mech Anal, 2009, 191:195-243
[9] Xie H, Li S. Stability for steady states of Navier-Stokes-Poisson equations. Nonlinear Anal, 2011, 74:5205-5214
[10] Deng Y, Xie H. Multiple stationary solutions of Euler-Poisson equations for non-isentropic gaseous stars. Acta Math Sci, 2010, 30B(6):2077-2088
[11] Lions P. The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Annales de l' I H P, 1984, 1(2):109-145
[12] Gidas B, Ni W, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68:209-243 |