数学物理学报 ›› 2016, Vol. 36 ›› Issue (2): 317-327.

• 论文 • 上一篇    下一篇

广义Broer-Kaup-Kupershmidt孤子方程的拟周期解

魏含玉1, 夏铁成2   

  1. 1. 周口师范学院数学与统计学院 河南周口 466001;
    2. 上海大学数学系 上海 200444
  • 收稿日期:2015-09-06 修回日期:2016-01-03 出版日期:2016-04-25 发布日期:2016-04-25
  • 通讯作者: 魏含玉,weihanyu8207@163.com E-mail:weihanyu8207@163.com
  • 基金资助:

    国家自然科学基金(11271008,61072147,11547175,11447220);上海大学一流学科;河南省自然科学基金(152300410230);河南省高等学校重点科研项目(16A110026)和周口师范学院博士科研基金项目(ZKNU2014130)资助

Quasi-Periodic Solution of the Generalized Broer-Kaup-Kupershmidt Soliton Equation

Wei Hanyu1, Xia Tiecheng2   

  1. 1 College of Mathematics and Statistics, Zhoukou Normal University, Henan Zhoukou 466001;
    2 Department of Mathematics, Shanghai University, Shanghai 200444
  • Received:2015-09-06 Revised:2016-01-03 Online:2016-04-25 Published:2016-04-25
  • Supported by:

    Supported by the NSFC (11271008, 61072147, 11547175, 11447220), the First-class Discipline of University in Shanghai, the Science and Technology Department of Henan Province (152300410230), the Key Scientific Research Projects of Henan Province (16A110026) and the Doctoral Research Fundation of Zhoukou Normal University (ZKNU2014130)

摘要:

该文从新谱问题出发,得到一个新的(2+1)-维广义Broer-Kaup-Kupershmidt孤子方程在Lax对非线性化下被分解成可积的常微分方程.接着,给出了一个有限维Hamilton系统并且证明在Liouville意义下是完全可积的.通过引进Abel-Jacobi坐标把Hamilton流进行了拉直,借助Riemann θ函数得到了(2+1)-维Broer-Kaup-Kupershmidt孤子方程的拟周期解.

关键词: 非线性化, Abel-Jacobi坐标, Riemann &theta, 函数, 拟周期解

Abstract:

In this paper, starting from a new spectral problem, a new (2+1)-dimensional generalized Broer-Kaup-Kupershmidt soliton equation is decomposed into systems of integrable ordinary differential equations resorting to the nonlinearization of Lax pairs. Then, a finite-dimensional Hamiltonian system is obtained and is proved to be completely integrable in Liouville sense. The Abel-Jacobi coordinates are constructed to straighten out the Hamiltonian flows, from which the quasi-periodic solution of the (2+1)-dimensional generalized Broer-Kaup-Kupershmidt soliton equation is obtained in terms of Riemann theta functions.

Key words: Nonlinearization, Abel-Jacobi coordinates, Riemann theta function, Quasi-periodic solution

中图分类号: 

  • O175.29