[1] Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Philadelphia:SIAM, 1981
[2] Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E. Theory of Solitons, the Inverse Scattering Methods. New York:Consultants Bureau, 1984
[3] Cao C W, Geng X G, Wang H Y. Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable. J Math Phys, 2002, 43:621-643
[4] Pan H F, Xia T C, Chen D Y. A two-component generalization of Burgers' equation with quasi-periodic solution. Rep Math Phys, 2014, 74:235-250
[5] 孙玉娟, 丁琦, 梅建琴, 张鸿庆. D-AKNS方程的代数几何解. 数学物理学报, 2013, 33A(2):276-284 Sun Y J, Ding Q, Mei J Q, Zhang H Q. Algebro-gemetric solutions of the D-AKNS equations. Acta Math Sci, 2013, 33A(2):276-284
[6] Hu X B, Wu Y T. Application of the Hirota bilinear formalism to a new integrable differential-difference equation. Phys Lett A, 1998, 246:523-529
[7] Hu X B, Ma W X. Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions. Phys Lett A, 2002, 293:161-165
[8] Hu X B, Tam H W. Application of Hirota's bilinear formalism to a two-dimensional lattice by Leznov. Phys Lett A, 2000, 276:65-72
[9] Cao C W. Nonlinearization of the Lax system for AKNS hierarchy. Sci China (A), 1990, 33:528-536
[10] Cao C W, Wu Y T, Geng X G. Relation between the Kadometsev-Petviashvili equation and the confocal involutive system. J Math Phys, 1999, 40:3948-3970
[11] 周汝光. 一个求孤子方程有限带势解的方法. 数学物理学报, 1998,18A(2):228-234 Zhou R G. A method to seek the finite-band solution of soliton equation. Acta Math Sci, 1998,18A(2):228-234
[12] Dai H H, Fan E G. Variable separation and algebro-geometric solutions of the Gerdjikov-Ivanov equation. Chaos Soliton Fract, 2004, 22:93-101
[13] Hon Y C, Fan E G. An algebro-geometric solution for a Hamiltonian system with application to dispersive long wave equation. J Math Phys, 2005, 46:032701
[14] Yue C, Xia T C. Algebro-geometric solutions for the complex Sharma-Tasso-Olver hierarchy. J Math Phys, 2014, 55:083511
[15] He G L, Geng X G, Wu L H. Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy. SIAM J Math Anal, 2014, 46:1348-1384
[16] Wang Z Y, Zhang J S. Explicit solutions for a new (2+1)-dimensional coupled mKdV equation. Commun Theor Phys, 2008, 49:396-400
[17] Ma W X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chinese Ann Math Ser A, 1992, 13:115-123
[18] Yang H X, Sun Y P. Hamiltonian and super-Hamiltonian extensions related to Broer-Kaup-Kupershmidt system. Int J Theor Phys, 2010, 49:349-364
[19] Arnold V I. Mathematical Methods of Classical Mechanics. Berlin:Springer, 1978
[20] Griffiths P, Harris J. Principles of Algebraic Geometry. New York:Wiley, 1994
[21] Mumford D. Tata Lectures on Theta I, II. Boston:Birkhauser, 1984
[22] Tracy E R, Chen H H, Lee Y C. Study of quasiperiodic solutions of the nonlinear schrödinger equation and the nonlinear modulational instability. Phys Rev Lett, 1984, 53:218-221 |