[1] Benci V, Fortunato D. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11(2):283-293
[2] Ruiz D. On the Schrödinger-Poisson-Slater system:behavior of minimizers, radial and nonradial cases. Archive for rational mechanics and analysis, 2010, 198(1):349-368
[3] Alves C O, Souto M, Soares S. Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition. J Math Anal Appl, 2011, 377(2):584-592
[4] Ambrosetti A, Ruiz D. Multiple bound states for the Schrödinger-Poisson problem. Commun Contemp Math, 2008, 10(3):391-404
[5] Azzollini A. Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity problem. J Differential Equations, 2010, 249(7):1746-1763
[6] Azzollini A, d'Avenia P, Pomponio A. On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann Inst H Poincaré Anal Non Linéaire, 2010, 27(2):779-791
[7] Azzollini A, Pomponi A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345(1):90-108
[8] Coclite G M. A multiplicity result for the nonlinear Schrödinger-Maxwell equations. Commun Appl Anal, 2003, 7(2/3):417-423
[9] D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv Nonlinear Stud, 2004, 4(3):307-322
[10] D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134(5):893-906
[11] Kikuchi H. On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Anal, 2007, 67(5):1445-1456
[12] Li Q D, Han S, Wei Z L. Existence of infinitely many large solutions for the nonlinear Schrödinger-Maxwell equations. Nonlinear Anal, 2010, 72(11):4264-4270
[13] Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237(2):655-674
[14] Wang Z P, Zhou H S. Positive solution for a nonlinear stationary Schrödinger-Poisson system in R3. Discrete Contin Dyn Syst, 2007, 18(4):809-816
[15] Zhao L G, Zhao F K. On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346(1):155-169
[16] Li F Y, Zhang Q. Existence of positive solutions to the Schrödinger-Poisson system without compactness conditions. J Math Anal Appl, 2012, 401(2):754-762
[17] Zhang J. On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth. Nonlinear Anal, 2012, 75(18):6391-6401
[18] Zhang Q, Li F Y, Liang Z P. Existence of multiple positive solutions to nonhomogeneous Schrödinger-Poisson system. Applied Mathematics and Computation, 2015, 259:353-363
[19] Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. New York:Springer-Verlag, 1989
[20] Berestycki H, Lions P L. Nonlinear scalar field equations, I. Existence of a ground state. Archive for Rational Mechanics and Analysis, 1983, 82(4):313-345
[21] Chen S J, Tang C L. High energy solutions for the superlinear Schrödinger-Maxwell equations. Nonlinear Anal, 2009, 71(10):4927-4934
[22] Chen S J, Tang C L. Multiple solutions for nonhomogeneous Schrödinger-Maxwell and Klein-Gordon-Maxwell equations on R3. NoDEA Nonlinear Differential Equations Appl, 2010, 17(5):559-574
[23] Sun J T. Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations. J Math Anal Appl, 2012, 390(2):514-522
[24] Bartsch T, Alexander Pankov, Wang Zhiqiang. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3(4):549-569
[25] Jiang Y S, Zhou H S. Schrödinger-Poisson system with steep potential well. J Differential Equations., 2011, 251:582-608
[26] Zhao L G, Liu H D, Zhao F K. Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. Journal of Differential Equations, 2013, 255:1-23
[27] Zou W M. Variant fountain theorems and their applications. Manuscripta Math, 2001, 104(3):343-358
[28] Ye Y W, Tang C L. Existence and multiplicity of solutions for fourth-order elliptic equations in RN. J Math Anal Appl, 2013, 406(1):335-351
[29] Ekeland I. Convexity methods in Hamiltonian mechanics//Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Berlin:Springer-Verlag, 1990
[30] Rabinowitz Paul H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence:Amer Math Soc, 1986
[31] Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J Funct Anal, 2005, 225(2):352-370 |