[1] Nakazawa M, Suzuki K. Gbit/s pseudorandom dark soliton data transmission over 1200 km. Electron Lett, 1995, 31:1076-1077
[2] Emplit P, Hamaide J P, Reynaud F, Froehly C, Barthelemy A. Picosecond steps and dark pulses through nonlinear single mode fibers. Opt Commun, 1987, 62:374-379
[3] Krökel D, Halas N J, Giuliani G, Grischkowsky D. Dark-pulse propagation in optical fibers. Phys Rev Lett, 1988, 60:29-32
[4] Weiner A M, Heritage J P, Hawkins R J, et al. Experimental observation of the fundamental dark soliton in optical fibers. Phys Rev Lett, 1988, 61:2445-2448
[5] Shukla P K, Eliasson B. Formation and dynamics of dark solitons and vortices in quantum electron plasmas. Phys Rev Lett, 2006, 96:245001
[6] Heidemann R, Zhdanov S, Sütterlin R, et al. Dissipative dark soliton in a complex plasma. Phys Rev Lett, 2009, 102:135002
[7] Frantzeskakis D J. Dark solitons in atomic Bose-Einstein condensates:from theory to experiments. J Phys A:Math Theo, 2010, 43:213001
[8] Chabchoub A, Kimmoun O, Branger H, et al. Experimental observation of dark solitons on the surface of water. Phy Rev Lett, 2013, 110:124101
[9] Sheppard A P, Kivshar Y S. Polarized dark solitons in isotropic Kerr media. Phys Rev E, 1997, 55:4773-4782
[10] Ling L M, Zhao L C, Guo B L. Darboux transformation and multi-dark soliton for N-component coupled nonlinear Schrödinger equations. Nonlinearity, 2015, 28:3243-3261
[11] Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Studies in Appl Math, 1974, 53:249-315
[12] Huang N N, Liu Z Z. A system of linear algebraic equations for giving Dark multi-soliton solutions of the mKdV equation. Commun Theor Phys, 1993, 19:457-462
[13] Chen Z Y, Huang N N, Liu Z Z, Xiao Y. An explicit expression of the Dark N-soliton solution of the mKdV equation by means of the Darboux transformation. J Phys A:Math Gen, 1993, 26:1365-1374
[14] Ablowitz M, Segur H. Solitons and the Inverse Scattering Transform. Philadelphia:SIAM, 1981
[15] Merle F, Vega L. L^2 stability of solitons for KdV equation. Int Math Res Not, 2003, 13:735-753
[16] Zha Q L, Li Z B. Darboux transformation and multi-solitons for complex mKdV equation. Chin Phys Lett, 2008, 25:8-11
[17] He J S, Wang L H, Li L J, et al. Few-cycle optical rogue waves:complex modified Korteweg-de Vries equation. Phys Rev E, 2014, 89:062917
[18] Neugebauer G, Meinel R. General N-soliton solution of the AKNS class on arbitrary background. Phys Lett A, 1984, 100(9):467-470
[19] Matveev V B, Salle M A. Darboux Transfromations and Solitons. Berlin:Springer-Verlag, 1991
[20] He J S, Zhang L, Cheng Y, Li Y S. Determinant representation of Darboux transformation for the AKNS system. Science in China Series A:Mathematics, 2006, 49:1867-1878
[21] Xu S W, He J S, Wang L H. The Darboux transformation of the derivative nonlinear Schrödinger equation. J Phys A:Math Theor, 2011, 44:305203
[22] Zhang L, He J S, Cheng Y, Li Y S. Surfaces and curves corresponding to the colutions generated from periodic seed of NLS equation. Acta Mathematica Sinica, 2012, 28:1713-1726
[23] Xu S W, He J S. The rogue wave and breather solution of the Gerdjikov-Ivanov equation. J Math Phys, 2012, 53:063507
[24] He J S, Zhang H R, Wang L H, et al. Generating mechanism for higher order rogue waves. Phys Rev E, 2013, 87:052914
[25] Han J W, Yu J, He J S. Determinant representation of N-times Darboux transformation for the defocusing nonlinear Schrödinger equation. Mod Phys Lett B, 2013, 27:1350216
[26] Li Y S, Gu X S, Zou M R. Three kinds of Darboux transformation for the evolution equations which connect with AKNS eigenvalue problem. Acta Math Sin, 1985, 3:143-151
[27] Shao Y J, Zeng Y B. The solutions of the NLS equations with self-consistent sources. J Phys A:Math Gen, 2005, 38:2441-2467 |