数学物理学报 ›› 2016, Vol. 36 ›› Issue (1): 14-26.

• 论文 • 上一篇    下一篇

散焦mKdV方程的N重暗孤子解的行列式表示

虞静1, 韩敬伟2, 王立洪3, 贺劲松3   

  1. 1 杭州电子科技大学理学院 杭州 310018;
    2 杭州电子科技大学信息工程学院 杭州 310018;
    3 宁波大学理学院 浙江 宁波 315211
  • 收稿日期:2015-07-09 修回日期:2015-12-26 出版日期:2016-02-25 发布日期:2016-02-25
  • 作者简介:贺劲松,hejingsong@nbu.edu.cn,jshe@ustc.edu.cn
  • 基金资助:

    国家自然科学基金(11271210,61273077);浙江省自然科学基金(LQ12A01002)和浙江省高等学校访问学者专业发展项目(FX2012013)资助

Determinant Representation of Dark N-Soliton Solution for the Defocusing Modified Korteweg-de Vries Equation

Yu Jing1, Han Jingwei2, Wang Lihong3, He Jingsong3   

  1. 1 School of Science, Hangzhou Dianzi University, Hangzhou 310018;
    2 School of Information Engineering, Hangzhou Dianzi University, Hangzhou 310018;
    3 School of Science, Ningbo University, Zhejiang Ningbo 315211
  • Received:2015-07-09 Revised:2015-12-26 Online:2016-02-25 Published:2016-02-25
  • Supported by:

    Supported by the NSFC (11271210, 61273077), the Zhejiang Provincial Natural Science Foundation of China (LQ12A01002) and the Professional Development Program of Zhejiang Province College Visiting Scholar (FX2012013)

摘要:

该文首先构造了耦合的mKdV方程的新的达布变换,同时显式给出了它的达布矩阵TN和新解q[N],r[N]的行列式表示.其次,考虑将约化条件r=q*附加到该达布变换上,以及考虑一个周期的非零种子解,得到了散焦mKdV方程的N重暗孤子解的行列式表示.最后,证明了暗的单孤子解和暗的2孤子解是光滑的,进一步证明了暗的N(N≥2)孤子解至少在某一邻域内是光滑的.

关键词: 达布变换, 行列式表示, 散焦mKdV方程

Abstract:

For coupled modified Korteweg-de Vries (mKdV) equation, we construct a new Darboux transformation (DT), whose Darboux matrix TN and transformed solutions q[N], r[N] are explicitly given in determinant form. When the reduction condition r=q* is imposed on the new DT and a periodic non-zero seed solution is considered, we obtain determinant representation of dark N-soliton solutions for the defocusing mKdV equation. Especially, we show that dark 1-soliton and dark 2-soliton are both smooth solutions, and furthermore, we show that dark N-soliton solutions are smooth at least on a certain domain.

Key words: Darboux transformation, Determinant representation, Defocusing mKdV equation

中图分类号: 

  • O29