数学物理学报 ›› 2015, Vol. 35 ›› Issue (5): 956-969.

• 论文 • 上一篇    下一篇

调和Dirichlet空间Dh1上有界、紧与Fredholm的Toeplitz算子

夏锦, 王晓峰, 曹广福   

  1. 广州大学数学与信息科学学院数学与交叉科学广东普通高校重点实验室(广州大学) 广州 510006
  • 收稿日期:2014-01-20 修回日期:2015-04-20 出版日期:2015-10-25 发布日期:2015-10-25
  • 作者简介:夏锦,xiaj@cdut.edu.cn;王晓峰,wangxiaofeng514@hotmail.com;曹广福,guangfucao@163.com
  • 基金资助:

    国家自然科学基金(11301101,11471084,11271092)和广州市教育局科技计划(2012A018)资助

Bounded, Compact and Fredholm Toeplitz Operators on Harmonic Dirichlet Space Dh1

Xia Jin, Wang Xiaofeng, Cao Guangfu   

  1. School of Mathematics and Information Science and Key Laboratory of Mathematics and Interdisciplinary, Guangzhou University, Guangzhou 510006
  • Received:2014-01-20 Revised:2015-04-20 Online:2015-10-25 Published:2015-10-25

摘要:

该文讨论了调和Dirichlet空间Dh1上Toeplitz与Hankel算子的有界性、紧性与Fredholm性质,计算了Toeplitz算子的Fredholm指标.

关键词: 调和Dirichlet空间, Toeplitz算子, Hankel算子, Fredholm指标, 紧性

Abstract:

We discuss the boundedness, compactness and spectra properties of the Toeplitz operators and Hankel operators on the Harmonic Dirichlet space Dh1; compute the Fredholm index of Fredholm Toeplitz operator.

Key words: Harmonic Dirichlet space, Toeplitz operator, Hankel operator, Fredholm index, Compactness

中图分类号: 

  • O177