[1] 张慧, 徐君祥, 张福保. Rn上耦合的非线性Schrödinger程的正基态解. 中国科学(数学), 2013, 43(1): 33-43
[2] Li Y Q, Wang Z Q, Zeng J. Ground states of nonlinear Schrödinger equations with potentials. Ann I H Poincaré-AN, 2006, 23: 829-837
[3] Alves C O, Souto M A S, Montemegro M. Existence of a ground state solution for a nonlinear scalar field equation with critical growth. Calc Var 2012, 43: 537-554
[4] Ambrosetti A, Felli V, Malchiodi A. Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J Eur Math Soc, 2005, 7: 117-144
[5] Szulkin A, Weth T. Ground state solutions for some indefinite variational problems. J Funct Anal, 2009, 257: 3802-3822
[6] Jeanjean L, Tanaka K. A remark on least energy solutions in RN. Proc Amer Math Soc, 2002, 131: 2399-2408
[7] Benrhouma M, Ounaies H. Existence of solutions for a perturbation sublinear elliptic equation in RN. Nonlinear Differ Equ Appl, 2010, 17: 647-662
[8] Ounaies H. Study of an elliptic equation with a singular potential. Indian J Pure Appl Math, 2003, 34: 111-131
[9] Liu S B. On ground states of superlinear p-Laplacian equations in RN. J Math Anal Appl, 2010, 361: 48-58
[10] Lam N, Lu G Z. Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition. J Geom Anal, 2014, 24: 118-143
[11] Lions P L. The concentration-compactness principle in the calculation of variations. The locally compact case, part 2. Ann Inst H Poincaré Annal Nonlinéaire, 1984, 1(4): 223-283
[12] Silva E A B, Soares S H M. Quasilinear Dirichlet problems in RN with critical growth. Nonlinear Anal TMA, 2001, 43: 1-20
[13] 张平正. 非线性Schrödinger方程基态解的一致集中. 数学学报, 2008, 51(1): 165-170 |