[1] Tan F, Zhang R F. On F-sensitive pairs. Acta Math Sci, 2011, 31B(4): 1425-1435
[2] Yin J D, Zhou Z L. Positive upper density points and chaos. Acta Math Sci, 2012, 32B(4): 1408-1414
[3] Oprocha P. A quantum harmonic oscillator and strong chaos. J Phys A: Math Gen, 2006, 39(47): 14559-14565
[4] Wu X X, Zhu P Y. The principal measure of a quantum harmonic oscillator. J Phys A: Math Theor, 2011, 44(50): 505101, 5 pages
[5] Li R S, Huang F, Zhao Y, Chen Z X, Huang C Y. The principal measure and distributional (p, q)-chaos of a coupled lattice system with coupling constant ε=1 related with Belusov-Zhabotinskii reaction. J Math Chem, 2013, 51(1): 1712-1719
[6] Cheng H Y, Sandu A. Uncertainty quantification and apportionment in air quality models using the polynomial chaos method. Environ Modell Softw, 2009, 24(8): 917-925
[7] Li Y N, Chen L, Cai Z S, Zhao X Z. Experimental study of chaos synchronization in the Belousov-Zhabotinsky chemical system. Chaos, Soliton Fract, 2004, 22(4): 767-771
[8] Tian L X, Liu Z R, Yang L. Can the linear operator in physics cause chaos? Comm Nonlinear Sci Number Simul, 1997, 2(2): 128-131
[9] Arnéodo A, Argoul F, Elezgaray J, Richetti P. Homoclinic chaos in chemical systems. Physica D: Nonlinear Phenomena, 1993, 62(1/4): 134-169
[10] Kolyada S, Snoha L. Topological entropy of nonautonomous dynamical systems. Random Comput Dynam, 1996, 4(2/3): 205-233
[11] Kolyada S, Misiurewicz M, Snoha L. Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval. Fund Math, 1999, 160(2): 161-181
[12] Kolyada S, Snoha L, Trofimchuk S. On minimality of nonautonomous dynamical systems. Neliniini Koliv, 2004, 7(1): 86-92
[13] Elaydi S N. Nonautonomous difference equations: Open problems and conjectures. Fields Inst Commum, 2004, 42(1): 423-428
[14] Elaydi S N, Sacker R J. Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures. J Differ Equ Appl, 2005, 11(4/5): 337-346
[15] Canovas J S. Some results on (X, f, A) nonautonomous systems. Grazer Math Ber, 2004, 346(1): 53-60
[16] Dvorakova J. Chaos in nonautonomous discrete dynamical systems. Comm Nonlinear Sci Number Simul, 2012, 17(4): 4649-4652
[17] Li T Y, Yorke J. Period three implies chaos. Amer Math Monthly, 1975, 82(10): 985-992
[18] Devaney R L. An Introduction to Chaotic Dynamcal Systems. Redwood City, CA: Addison-Wesley Publishing Company, 1989
[19] Snoha L. Generic chaos. Comment Math Univ Carolin, 1990, 31(4): 793-810
[20] Snoha L. Dense chaos. Comment Math Univ Carolin, 1992, 33(4): 747-752
[21] Ruette S. Dense chaos for continuous interval maps. Nonlinearity, 2005, 18(4): 1691-1698
[22] Akin E, Kolyada S. Li-Yorke sensitivity. Nonlinearity, 2003, 16(4): 1421-1433
[23] Schweizer B, Smital J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans Amer Math Soc, 1994, 344(2): 737-754
[24] Canovas J S. Li-Yorke chaos in a class of nonautonomous discrete systems. J Difference Equ Appl, 2011, 17(4): 479-486
[25] Canovas J S. Recent results on nonautonomous discrete systems. Bol Soc Esp Mat Apl, 2010, 51(1): 33-41
[26] Canovas J S. On ω-limit sets of nonautonomous discrete systems. J Difference Equ Appl, 2006, 12(1): 95-100 |