[1] Aronson D G. Bounds for the fundamental solution of a parabolic equation. Bull Amer Math Soc, 1969, 73: 890-896
[2] Barlow M T. Diffiusions on fractals//Bernard P. Lectures on Probability Theory and Statistics. Lect Notes Math, Berlin: Springer, 1998, 1690: 1-121
[3] Barlow M T. Heat kernels and sets with fractal structure. Contemporary Math, 2003, 338: 11-40
[4] Barlow M T, Coulhon T, Kumagai T. Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Comm Pure Appl Math, 2005, 58(12): 1642-1677
[5] Coulhon T, Grigor'yan A. Pointwise estimates for transition probabilities of random walks on infinite graphs//Grabner P, Woess W. Trends in Mathematics: Fractals in Graz 2001, Boston: Birkhäuser, 2002: 119-134
[6] Carlen E A, Kusuoka S, Stroock D W. Upper bounds for symmetric Markov transition functions. Ann Inst Heri Poincare-Probab Statist, 1987, 23: 245-287
[7] Chavel I. Eigenvalues in Riemannian Geometry. New York: Academic Press, 1984
[8] Davies E B. Heat Kernels and Spectral Theory. Cambridge: Cambridge University Press, 1989
[9] Fabes E B, Stroock D W. A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash. Arch Rational Mech Anal, 1986, 96: 327-338
[10] Fukushima M, Oshima Y, Takeda M. Dirichlet forms and symmetric Markov processes//Studies in Mathematics. Berlin: De Gruyter, 1994
[11] Grigor'yan A. The heat equation on non-compact Riemannian manifolds. (in Russian) Matem Sbornik, 1991, 182(1): 55-87; Engl transl: Math USSR Sb, 1992, 72(1): 47-77
[12] Grigor'yan A. Gaussian upper bounds for the heat kernel on arbitrary manifolds. J Diff Geom, 1997, 45: 33-52
[13] Grigor'yan A. Heat kernels on weighted manifolds and applications, Contemporary Mathematics, 2006, 398: 93-191
[14] Grigor'yan A, Hu J. Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent Math, 2008, 174: 81-126
[15] Grigor'yan A. Heat Kernel and Analysis on Manifolds. Providence, RI: Amer Math Soc, 2009
[16] Grigor'yan A. Two-sided estimates of heat kernels on metric measure spaces. Ann Probab, 2012, 40: 1212-1284
[17] Grigor'yan A. Estimates of heat kernels on Riemannian manifolds//London Math Soc Lect Note Ser, Cambridge: Cambridge University Press, 1999
[18] Grigor'yan A, Telcs A. Harnack inequalities and sub-Gaussian estimates for random walks. Math Ann, 2002, 324: 521-556
[19] Grigor'yan A, Hu J. Upper bounds of heat kernels on doubling spaces. Moscow Math J (to appear)
[20] Grigor'yan A, Hu J, Lau Ka-Sing. Obtaining upper bounds of heat kernels from lower bounds. Communications on Pure and Applied Mathematics, 2008, 66(5): 639-660
[21] Grigor'yan A, Hu J. Heat kernels and green functions on metric measure spaces. Canadian Math J (to appear)
[22] Grigor'yan A, Yau S T. Heat kernels on weighted manifolds and applications. Cont Math, 2006, 398: 93-191
[23] Hebisch W, Saloff-Coste L. On the relation between elliptic and parabolic Harnack inequalities. Ann Inst Fourier (Grenoble), 2001, 51: 1437-1481
[24] Jorgenson J, Lynne W, ed. The ubiquitous heat kernel//Contemporary Math 398, Providence, RI: Amer Math Soc, 2006
[25] Kigami J. Analysis on Fractals. Cambridge: Cambridge University Press, 2001
[26] Nash J. Continuity of solutions of parabolic and elliptic equations. Amer J Math, 1958, 80: 931-954
[27] Varopoulos N Th, Saloff-Coste L, Coulhon T. Analysis and geometry on groups//Cambridge Tracts in Mathematics, 100. Cambridge: Cambridge University Press, 1992
[28] Li P, Yao S T. On the parabolic kernel of the Schrödinger operator. Acta Math, 1986, 156(3/4): 153-201
[29] Porper F O, Eidel'man S D. Two-side estimates of fundamental solutions of second-order parabolic equations and some applications. Russian Math Surveys, 1984, 39: 119-178
[30] Rosenberg S. The Laplacian on a Riemannian manifold//London Mathematical Society Student Texts 31. Cambridge: Cambridge University Press, 1997
[31] Saloff-Coste L. A note on Poincare, Sobolev, and Harnack inequalities. Internat Math Res Notices, 1992, 2: 27-38
[32] Saloff-Coste L. Aspects of Sobolev inequalities//London Math Soc Lecture Note Ser, 289. Cambridge: Cambridge University Press, 2002
[33] Schoen R, Yau S T. Lectures on Differential Geometry. Boston: International Press, 1994 |