[1] Banach A. Sur les opérations dans les ensembles abstraist et leur applications aux équations intégrales. Fund Math, 1922, 3: 133-181
[2] Aliouche A. A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type. J Math Anal Appl, 2006, 322: 796-802
[3] Altun I, Türko?lu D. Some fixed point theorems for weakly compatible mapping satisfying an implicit relation. Taiwanese J Math, 2009, 13: 1291-1304
[4] Jachymski J. Remarks on contractive conditions of integral type. Nonlinear Appl, 2009, 71: 1073-1081
[5] Mocanu M, Popa V. Some fixed point theorems for mappings satisfying implicit relations in symmetric spaces. Liberates Math, 2008, 28: 1-13
[6] Gairola U C, Rawat A S. A fixed point theorem for interal type inequality. Int J Math Anal, 2008, 2(15): 709-712
[7] Sirous Moradi, Mahbobeh Omid. A fixed point theorem for integral type inequality depending on another function. Int J Math Anal, 2010, 4(30): 1491-1499
[8] Altun I, Abbas M, Simsek H. A fixed point theorem on cone metric spaces with new type contractivity. Banach J Math Anal, 2011, 5(2): 15-24
[9] Popa V, Mocanu M. Altering distance and common fixed points under implicit relations. Hacettepe J Math Satist, 2009, 38(3): 329-337
[10] Abbas M, Rhaodes B E. Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings satisfying generalized contractive condition of integral type. Fixed Point Theory and Applications, 2007, Article ID 54101, 9pages
[11] Rakotch E. A note on contractive mappings. Proc Amer Math, 1962, 13: 459-465
[12] Branciari A. A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int J Math Sci, 2002, 29: 531-536
[13] Asmri M, Mouawkil D E. Common fixed points under contractive conditions in symmetric spaces. Applied Mathematics E-notes, 2003, 3: 156-162
[14] Asmri M, Mouawkil D E. Some new common fixed points under strict contractive conditions. J Math Anal Appl, 2002, 270: 181-188
[15] 胡新启, 刘启宽. 度量空间中反交换映射的公共不定点. 数学杂志, 2007, 27(1):19-22
[16] 夏大峰, 符美芬, 姜波. 具有对称集合和完备度量空间上 的两个映射的公用不动点. 数学进展, 2007, 36(4): 415-420
[17] 朴勇杰, 姜美兰. W-空间上的广义收缩型映射族的唯 一公共不动点. 东北师范大学学报(自然科学版), 2011, 43(3): 28-31
[18] 朴勇杰, 金光植. W-空间上自映射族的唯一公共不动点. 云南大学学报(自然科学版), 2012, 34(1): 1-4
[19] 朴勇杰, 金月曦. W-空间上满足收缩型条件的映射的唯 一公共不动点. 系统科学与数学, 2012, 35(5): 601-609
[20] 吕中学. 度量空间中反交换映射的公共不动点. 应用泛函分析学报, 2002, 4(3): 226-228
[21] 陆珏, 冀小明, 周武. Common fixed points for selfmaps without contractive conditions in symmetric spaces. 西南民族大学(自然科学版), 2005, 31(1): 13-16
|