数学物理学报 ›› 2015, Vol. 35 ›› Issue (2): 405-421.

• 论文 • 上一篇    下一篇

分数阶脉冲中立型随机微积分方程的适定性

Diem Dang Huan1,2, 高洪俊1   

  1. 1. 南京师范大学数学科学学院数学研究所 南京 210023;
    2. 北江农林大学基础科学学院 越南北江 21000
  • 收稿日期:2013-07-12 修回日期:2014-04-28 出版日期:2015-04-25 发布日期:2015-04-25
  • 作者简介:Diem Dang Huan,E-mail:diemdanghuan80@gmail.com;高洪俊,E-mail:gaohj@njnu.edu.cn
  • 基金资助:

    国家自然科学基金(11171158)和江苏省教育厅自然科学基金(11KJA110001)资助

Well-Posedness for Fractional Neutral Impulsive Stochastic Integro-Differential Equations

Diem Dang Huan1,2, Gao Hongjun1   

  1. 1. School of Mathematical Science, Nanjing Normal University, Nanjing 210023;
    2. Faculty of Basic Sciences, Bacgiang Agriculture and Forestry University, Bacgiang 21000, Vietnam
  • Received:2013-07-12 Revised:2014-04-28 Online:2015-04-25 Published:2015-04-25

摘要:

利用 Sadovskii 不动点定理以及α-预解算子理论讨论了一类在 Hilbert 空间中带无限时滞的分数阶脉冲中立型随机微积分方程温和解的适定性, 并通过举例说明了结果的有效性.

关键词: α-预解算子, 分数阶随机微积分方程, 相空间, 中立型, 脉冲, Sadovskii不动点定理

Abstract:

This paper deals with the well-posedness of mild solutions for a class of fractional neutral impulsive stochastic integro-differential equations with infinite delay in Hilbert spaces. The results are obtained by using the Sadovskii fixed point theorem combined with theories of α-resolvent operators. An example is provided to illustrate the effectiveness of the proposed results.

Key words: α-Resolvent operator, Fractional stochastic integro-differential equations, Phase space, Neutral, Impulses, Sadovskii's fixed point theorem

中图分类号: 

  • O211.63