数学物理学报 ›› 2015, Vol. 35 ›› Issue (2): 381-394.

• 论文 • 上一篇    下一篇

一类扩散的Gierer-Meindardt的模型的振动模式和Hopf分支分析

万阿英1, 衣凤岐2, 郑立飞3   

  1. 1. 呼伦贝尔学院数学系 内蒙古呼伦贝尔 021008;
    2. 哈尔滨工业大学应用数学系 哈尔滨 150001;
    3. 西北农林科技大学应用数学研究所 陕西杨凌 712100
  • 收稿日期:2013-11-14 修回日期:2014-11-29 出版日期:2015-04-25 发布日期:2015-04-25
  • 作者简介:万阿英,E-mail:wanaying1@aliyun.com;衣凤岐,E-mail:fengqi.yi@gmail.com
  • 基金资助:

    国家自然科学基金(11461024,11371108)、内蒙古自然科学基金(2013MS0102)、黑龙江省海外回国人员科学研究基金(LC2012C36)和西北农林科技大学博士科研启动项目(Z109021414)资助

Hopf Bifurcation Analysis and Oscillatory Patterns of A Diffusive Gierer-Meinhardt Model

Wan Aying1, Yi Fengqi2, Zheng Lifei3   

  1. 1. Department of Mathematics, Hulunbeir College, Hailar, Inner Mongolia 021008;
    2. Department of Applied Mathematics, Harbin Engineering University, Harbin, Heilongjiang 150001;
    3. Applied Mathematical Institute, College of Science, Northwest A&F University, Shaan'xi Yangling 712100
  • Received:2013-11-14 Revised:2014-11-29 Online:2015-04-25 Published:2015-04-25

摘要:

该文研究了带有扩散项的Gierer-Meindardt模型Hopf分支分析. 证明了该系统的Hopf分支的存在性, 同时给出了决定分支方向和分支周期解稳定性的条件. 结果表明这个著名的模型具有复杂的振动模式. 最后, 数值模拟的结果验证该理论结果的正确性.

关键词: Gierer-Meindardt 模型, Hopf分支, 振动模式, 稳定性, 分支方向

Abstract:

In this paper, a kind of diffusive Gierer-Meindardt model is considered. We performed detailed Hopf bifurcation analysis to this reaction diffusion systems. We not only prove the existence of Hopf bifurcations, but also derived the conditions to determine the bifurcation direction and the stability of the bifurcating periodic solutions. These results suggest the complex oscillatory patterns of this famous model. Computer simulations are included to support our theoretical analysis.

Key words: Gierer-Meindardt model, Hopf bifurcation, Oscillatory patterns, Stability, Bifurcation direction

中图分类号: 

  • O189