[1] Aifantis E C. On the problem of diffusion in solids. Acta Mech, 1980, 37: 265-296
[2] Kuttler K, Aifantis E C. Quasilinear evolution equations in nonclassical diffusion. SIAM J Math Phys, 1988, 19: 110-120
[3] Peter J G, Gurtin M E. On the theory of heat condition involving two temperatures. Z Ange Math Phys, 1968, 19: 614-627
[4] Pata V. Attractors for a damped wave equation on R3 with linear memory. Math Meth Appl Sci, 2000, 23: 633-653
[5] Belleri V, Pata V. Attractors for semilinear strongly wave equation on R3. Discrete Contin Dynam Systems, 2001, 7: 719-735
[6] Xiao Y L. Attractors for a nonclassical diffusion. Acta Math Appl Sin, English Ser, 2002, 18: 273-276
[7] Sun C Y, Wang S Y, Zhong C K. Global attractors for a nonclassical diffusion equation. Acta Math Sin, English Ser, 2007, 23: 1271-1280
[8] Sun C Y, Yang M H. Dynamics of the nonclassical diffusion equations. Asympt Anal, 2008, 59: 51-81
[9] Wang S Y, Li D S, Zhong C K. On the dynamics of a class of nonclassical parabolic equations. J Math Anal Appl, 2006, 317: 565-582
[10] Wu H Q, Zhang Z Y. Asymptotic regularity for the nonclassical diffusion equation with lower regular foring term. Dynamical Systems, 2011, 26: 391-400
[11] Liu Y F, Ma Q Z. Exponential attractors for a nonclassical diffusion equation. Electronic Journal of Differential Equations, 2009, 9: 1-7
[12] Zhang Y J, Ma Q Z. Exponential attractors for nonclassical diffusion equations with lower regular forcing term. International Journal of Modern Nonlinear Theory and Application, 2014, 3: 15-22
[13] Morillas F, Valero J. Attractors for reaction-diffusion equations in RN with continuous nonlinearity. Asymptotic Analysis, 2005, 44: 111-130
[14] Evans L C. Partial Differential Equations. GSM 19, Providence, Rhode Island: AMS, 1998
[15] Ma Q Z, Liu Y F, Zhang F H. Global attractors in for nonclassical diffusion equations. Discrete Dynamics in Nature and Society, 2012, 2012: 1-16
[16] Deimling K. Nolinear Function Analysis. Berlin: Spring-Verlag, 1985
[17] Babin A V, Vishik M I. Attractors of Evolution Equation. Amsterdam: North-Holland, 1992
|