[1] Acerbi E, Mingione G. Regularity results for stationary eletrorheological fluids, Arch Ration Mech Anal, 2002, 164: 213-259
[2] Antonsev S N. Wave equation with p(x,t)-Laplacian and damping term: existence and blow-up. Differ Equ Appl, 2011, 3: 503-525
[3] Antonsev S N, Shmarev S I. Blow up of solutions to parabolic equations with nonstandard growth conditions. J Comput Appl Math, 2010, 234: 2633-2645
[4] Ball J M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart J Math Oxford, 1977, 28: 473-486
[5] Diening L, Harjulehto P, Hästö P, R??i?ka M. Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Vol 2017. Heidelberg: Springer-Verlag, 2011
[6] Ferreira R, de Pablo A, Pérez-LLanos M, Rossi J D. Critical exponents for a semilinear parabolic equation with variable reaction. Proc Roy Soc Edinburgh (Sec A), 2012, 142: 1027-1042
[7] Gao W J, Han Y Z. Blow-up of a nonlocal semilinear parabolic equation with positive initial energy. Appl Math Lett, 2011, 24: 784-788
[8] Glassey R. Finite-time blow-up for solutions of nonlinear wave equations. Math Z, 1981, 177: 323-340
[9] Hu B, Yin H M. Semi-linear parabolic equations with prescribed energy. Rend Circ Mat Palermo, 1995, 44: 479-505
[10] John F. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math, 1979, 28: 235-268
[11] Kaplan S. On the growth of solutions of quasilinear parabolic equations. Commun pure appl Math, 1963, 16: 327-330
[12] Levine H A. Instablity and nonexistence of global solutions of nonlinear wave equations of the form Putt=Au+ F(u). Tran Amer Math Soc, 1974, 192: 1-21
[13] Liu B, Li F. Blow-up solutions for localized reaction-diffusion equations with variable exponents. Math Methods Appl Sci, 2011, 34: 1778-1788
[14] Liu W J, Wang M X. Blow-up of the solution for a p-Laplaican equation with positive initial energy. Acta Appl Math, 2008, 103: 141-146
[15] Pinasco J P. Blow-up for parabolic and hyperbolic problems with variable exponents. Nonlinear Anal, 2009, 71: 1049-1058
[16] Quittner P, Souplet Ph. Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Berlin: Birkhâuser Advanced Texts, 2007
[17] R??i?ka M. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Vol 1748. Berlin: Springer, 2000
[18] Wu X L, Guo B, Gao W J. Blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy. Appl Math Lett, 2013, 26: 539-543
[19] Wang H, He Y J. On blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy. Appl Math Lett, 2013, 26: 1008-1012
|