[1] Williams J S. Prime graph components of finite groups. J Algebra, 1981, 69: 487--513
[2] Shi W J, Bi J X. A characteristic property for each finite projective special linear group//Kov\'{a}cs L G. Groups--Canbera 1989: Lecture Notes in Mathematics. Berlin: Springer Verlag, 1990, 1456: 171--180
[3] Khukhro E I, Mazurov V D. Unsolved Problems in Group Theory: The Kourovka Notebook. 17th ed. Novosibirsk:
Sobolev Institute of Mathematics, 2010
[4] 陈贵云. 关于Thompson 猜想[D]. 成都: 四川大学, 1994
[5] 陈贵云. 关于 Thompson 猜想//中国科协首届青年学术年会执行委员会: 中国科技技术协会首届青年学术年会论文集.
北京: 科学技术出版社, 1992: 1--6
[6] Chen G Y. On Thompson's conjecture. J Algebra, 1996, 185: 184--193
[7] Chen G Y. Further reflections on Thompson's conjecture. J Algebra, 1999, 218: 276--285
[8] Vasil'ev A V. On Thompson's conjecture. Siberian Electronic Mathematical Reports, 2009, 6: 457--464
[9] Jiang Q H, Shao C G, Guo X Y, et al. On Thompson's conjecture of A10. Comm Algebra, 2011, 39(7): 2349--2353
[10] Gerald Pientka. A characterization of the alternating group A10 by its conjugacy class lengths. Beitr Algebra Geom,
2012, 53: 273--280
[11] Ahanjideh N. On Thompson's conjecture for some finite simple groups. J Algerba, 2011, 344: 205--228
[12] Gordhov I B. On Thompson's conjecture for simple groups with connected prime graph. Algerba and Logic, 2012,
51(2): 111--127
[13] 李金宝. 具有特殊共轭类长的有限群及子群的广义置换性[D]. 重庆: 西南大学, 2012
[14] Khosravi A. A new characterization of almost sporadic simple groups. Journal of Algebra and Its Applications, 2002,
1(3): 267--279
[15] Alavi S H, Daneshkhah A. A new characterization of alterating and symmetric groups. J Appl Math & Computing, 2005,
17(1/2): 245--258
[16] Wang L L, Shi W J. Characterization of Aut( J2 ) and Aut(McL) by their non-commuting graphs. Algebra Colloquium, 2011, 18(2): 327--332
[17] Shen H, Cao H P, Chen G Y. Characterization of automorphism groups of sporadic simple groups. Front Math China,
2012, 7(3): 513--519
[18] Conway J H, Curtis R T, Norton S P, et al. Atlas of Finite Groups. Oxford: Clarendon Press, 1985
[19] 徐明耀. 有限群导引(上册). 北京: 科学出版社, 1993
[20] Robinson D S. A Course in the Theory of Groups. New York: Springer-Verlag, 2001
[21] 陈贵云. Frobenius 群与2-Frobeniusgroup的结构. 西南师范大学学报, 1995, 20(5): 485--487
[22] 张良才, 施武杰, 刘雪峰. L4(4) 的非交换图刻画. 数学年刊(A), 2009, 30(4): 517--524
[23] Abdollahi A, Shahverdi H. Characterization of the alternating group by its non-commuting graph. J Algerba, 2012,
357: 203--207
[24] Drafsheh M R, Yousefzadeh P. Characterization of the symmeric group by its non-commuting graph. International Journal of Group Theory, 2013, 2(2): 47--72
[25] Chen Y H, Chen G Y. Recognition of A10 and L4(4) by two special conjugacy class sizes. Italian Journal of Pure and
Applied Mathematics, 2012, 29: 387--394
[26] Xu M C. Thompson's conjecture for alternating group of degree 22. Frontiers of Mathematics in China, 2013, 8(5):
1227--1236
[27] Ahanjideh N. Thompson's conjecture for some finite simple groups with connected prime graph. Algebra and Logic, 2013, 51(6): 451--478
[28] Ahanjideh N. On Thompson's conjecture on the conjugacy classes sizes. International Journal of Algebra and Computation, 2013, 23(1): 37--68
[29] Ahanjideh N. On the validity of Thompson's conjecture for finite simple groups. Comm Algebra, 2013, 41: 4116--4145 |