[1] Beir\~{a}o da Veiga H. A new regularity class for the Navier-Stokes equations in Rn. Chinese Ann Math Ser B, 1995, 16: 407--412
[2] Cao C S. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete Contin Dyn Syst, 2010, 26: 1141--1151
[3] Cao C S, Titi E S. Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ Math J, 2008,
57: 2643--2661
[4] Eskauriaza L, Ser\"egin G A, \v Sver\'ak V. L3, ∞-solutions of Navier-Stokes equations and backward uniqueness.
Russ Math Surv, 2003, 58: 211--250
[5] Jia X J, Jiang Z H. An anisotrpic regularity criterion for the 3D Navier-Stokes equations. Commu Pure Appl Anal, 2013, 12: 1299--1306
[6] Jia X J, Zhou Y. Remarks on regularity criteria for the Navier-Stokes equations via one velocity component. Nonlinear Anal Real World Appl, 2014, 15: 239--245
[7] Jia X J, Zhou Y. Regularity criteria for the three-dimensional Navier-Stokes equations involving one entry of the velocity gradient tensor. Preprint, 2014
[8] Kukavica I, Ziane M. Navier-Stokes equations with regularity in one direction. J Math Phys, 2007, 48: 065203, 10 pp
[9] Kukavica I, Ziane M. One component regularity for the Navier-Stokes equations. Nonlinearity, 2006, 19: 453--469
[10] Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach Science Publishers, 1969
[11] Lemari\'e-Rieusset P G. Recent Developments in the Navier-Stokes Problem. Boca Raton: Chapman & Hall/CRC, 2002
[12] Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math, 1934, 63: 193--248
[13] Neustupa J, Novotn'y A, Penel P, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity. Topics in mathematical fluid mechanics, Quad Mat, 2002, 10: 163--183
[14] Penel P, Pokorn\'y P. On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations. J Math Fluid Mech, 2011, 13: 341--353
[15] Penel P, Pokorn\'y M. Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity.
Appl Math, 2004, 49: 483--493
[16] Pokorn\'y M, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron J Differential Equations, 2003, 2003: 1--8
[17] Prodi G. Un teorema di unicit\'a per le equazioni di Navier-Stokes. Ann Mat Pura Appl, 1959, 48: 173--182
[18] Serrin J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1962, 9: 187--195
[19] Temam R. Navier-Stokes Equations, Theory and Numerical Analysis. Providence, RI: AMS Chelsea Publishing, 001
[20] Wang F, Wang K Y. Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion.
Nonlinear Analysis: Real World Appl, 2013, 14: 526--535
[21] Zhang Z J. A regularity criterion for the Navier-Stokes equations via two entries of the velocity Hessian tensor. arXiv: 1103.1196
[22] Zhang Z J. A Serrin-type reuglarity criterion for the Navier-Stokes equations via one velocity component. Commun Pure Appl Anal, 2013, 12: 117--124
[23] Zhang Z J. A Serrin type regularity criterion for the 3D Navier-Stokes equations in terms of the gradient of
one velocity component. (submitted)
[24] Zhang Z J, Li P, Guo C C, Lu M. Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient. Acta Appl Math, 2013, 123: 43--52
[25] Zhang Z J, Yao Z A, Lu M, Ni L D. Some Serrin-type regularity criteria for weak solutions to the Navier-Stokese equations. J Math Phys, 2011, 52: 053103
[26] Zhang Z J, Zhong D X, Hu L. A new regularity criterion for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor. Acta Appl Math, doi: 10.1007/s10440-013-9834-3
[27] Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 84: 1496--1514
[28] Zhou Y. A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component.
Methods Appl Anal, 2002, 9: 563--578
[29] Zhou Y. On regularity criteria in terms of pressure for the Navier-Stokes equations in R3. Proc Amer Math Soc, 2006, 134: 149--156
[30] Zhou Y. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math Ann, 2004, 328: 173--192
[31] Zhou Y, Pokorn\'y M. On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J Math Phys, 2009, 50: 123514, 11 pp
[32] Zhou Y, Pokorn\'y M. On the regularity of the solutions of the Navier-Stokes equations via one velocity component.
Nonlinearity, 2010, 23: 1097--1107 |